Baryon Spectroscopy at JLab

16 Oct 2023, 11:00
30m

Speaker

Volker Crede (Florida State University)

Description

High-energy electrons and photons are a remarkably clean probe of hadronic matter, essentially providing a microscope for examining atomic nuclei and the strong nuclear force. One of the most striking phenomena of Quantum Chromodynamics (QCD) is the formation of the nucleon out of massless gluons and almost massless quarks. This system of confined quarks and gluons serves as the basic constituent of ordinary baryonic matter and exhibits the characteristic spectra of excited states, which are sensitive to the details of quark confinement. While the last few years have seen significant progress toward the mapping of the non-strange nucleon and $\Delta$ spectrum, experimental information on the spectrum, structure, and decays of strangeness $-2$ $\Xi$ baryons remains sparse compared to non-strange and strangeness $-1$ baryons. Moreover, the photoproduction mechanism for these so-called Cascade resonances is not very well understood and expected to proceed via highly excited intermediate singly strange hyperons in reactions such as $\gamma p\to K\,Y^\ast\,(\Lambda^\ast,\,\Sigma^\ast)\to KK\,\Xi^{(\ast)}$.

Jefferson Lab has accumulated high-statistics samples of photoproduction data in recent years on both polarization observables for the $N^\ast$ program at CLAS and on hyperons at higher incident-photon energies at GlueX and CLAS12. Since the lowest-lying Cascade states are expected to have narrow widths (as compared to the broad and overlapping $N^\ast$ states), GlueX will be able to shed more light on the systematics of the spectrum of excited states and their properties. Copious data for excited strangeness $-1$ baryons have also been collected, e.g., for the $\Lambda(1405)$ and $\Lambda(1520)$, along with the data for $\Xi$ baryons in this experimental hyperon program. In this talk, I will discuss preliminary results on photoproduced $\Xi$ baryons, recent results for excited strangeness $-1$ baryons, and give a brief outlook on the GlueX potential for a spectroscopy program on excited nucleon and $\Lambda$ baryons.

Parallel Session Invited Plenary Talk

Primary author

Volker Crede (Florida State University)

Presentation materials