Baryon Spectroscopy at Jefferson Laboratory

Volker Credé

Florida State University, Tallahassee, Florida

Int. Conf. on Meson-Nucleon Physics and the Structure of the Nucleon

MENU 2023

Mainz, Germany

10/16/2023

Outline

- Introduction and Motivation
 - Experimental Studies of Baryons
- 2 Spectroscopy of Nucleon Resonances
- Baryon Spectroscopy at GlueX
 - The GlueX Experiment
 - Nucleon Resonances
 - The Study of Strangeness -1 Hyperons
 - Spectroscopy of Ξ Resonances
- 4 Summary and Conclusions

(日)

Outline

Introduction and Motivation
Experimental Studies of Baryons
Spectroscopy of Nucleon Resonances
Baryon Spectroscopy at GlueX
The GlueX Experiment
Nucleon Resonances
The Study of Strangeness -1 Hyperons

- Spectroscopy of Ξ Resonances
- 4 Summary and Conclusions

• • • • • • • • • • • •

Experimental Studies of Baryons

Experimental Studies of Baryons

Hadron Beams: Pion- (Kaon-) Nucleon Scattering

First insight into experimental difficulties:

- The elastic cross section drops fast.
 - → The resonances decouple from elastic scattering amplitude.
- Gradual disappearance of resonant structures in the πp cross sections
 → For √s > 1.7 GeV, more and more inelastic channels open.

In 1952, first cross-section measurement of $\pi^+ p \rightarrow \pi^+ p$ (H. L. Anderson, E. Fermi, E. A. Long, D. E. Nagle, Phys. Rev. 85 (1952) 936)

ヘロト ヘアト ヘヨト ヘ

Baryon Spectroscopy: The Light Flavors

The strong coupling confines quarks and breaks chiral symmetry, and so defines the world of light hadrons.

Baryons are special because

Their structure is most obviously related to the color degree of freedom, e.g. $|\Delta^{++}\rangle = |u^{\uparrow}u^{\uparrow}u^{\uparrow}\rangle$.

Many Y* QN not measured: (Quark model assignments)

→ Most Ξ^* and Ω^* , etc.

Volker Credé

Baryon Spectroscopy at JLab

Experimental Studies of Baryons

SU(4) Multiplet Structure of Baryons

Multiplet structure for flavor SU(4):

 $\mathbf{4}\,\otimes\,\mathbf{4}\,\otimes\,\mathbf{4}\,=\,\mathbf{20}_{\mathcal{S}}\,\oplus\,\mathbf{20}_{\mathcal{M}}\,\oplus\,\mathbf{20}_{\mathcal{M}}\,\oplus\,\mathbf{4}_{\mathcal{A}}$

→ Great progress also for charmed and bottom baryons (Belle, LHCb). (S. Yang [Belle], next presentation | Zan Ren [LHCb], Tuesday, 10:00 - 10:30)

ヘロト ヘワト ヘビト ヘビト

How do we study baryons experimentally?

Light-flavor baryons are typically studied in fixed-target experiments (nuclear physics), heavy-flavor baryons are studied at colliders (high-energy physics).

Fixed-Target Experiments

Photo-/electroproduction, e.g. Jefferson Lab, ELSA, MAMI, etc.

e. g.
$$\gamma N (e^- N) \rightarrow (e^-) N^* / \Delta^*$$

 $\gamma N (e^- N) \rightarrow (e^-) K Y^* (Y^{ast} = \Lambda^*, \Sigma^*)$
/ *K*-induced production, e. g. HADES@GSI, (future J-PARC, JLab)
e. g. $\pi N \rightarrow N^* / \Delta^*$

Collider Experiments

 π

at e^+e^- machines, e.g. BES III, Belle, BaBar, etc.

e.g. $\equiv_c^+ (\Lambda_c^+) \rightarrow [\equiv^- \pi^+]_{\equiv^*} \pi^+ (K^+)$ or $e^+ e^- \rightarrow J/\psi \rightarrow N^* \overline{N}$ at pp machines, e.g. LHC

e.g. $\Xi_b^{*-} \rightarrow \Xi_b^- \pi^+ \pi^-$ (LHCb, CMS)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

How do we study baryons experimentally?

Light-flavor baryons are typically studied in fixed-target experiments (nuclear physics), heavy-flavor baryons are studied at colliders (high-energy physics).

Fixed-Target Experiments

Photo-/electroproduction, e.g. Jefferson Lab, ELSA, MAMI, etc.

e. g.
$$\gamma N (e^- N) \rightarrow (e^-) N^* / \Delta^*$$

 $\gamma N (e^- N) \rightarrow (e^-) K Y^* (Y^{ast} = \Lambda^*, \Sigma^*)$
/ *K*-induced production, e. g. HADES@GSI, (future J-PARC, JLab
e. g. $\pi N \rightarrow N^* / \Delta^*$

2 Collider Experiments

 π

at e^+e^- machines, e.g. BES III, Belle, BaBar, etc.

e.g. $\equiv_c^+ (\Lambda_c^+) \rightarrow [\equiv^- \pi^+]_{\equiv^*} \pi^+ (K^+)$ or $e^+ e^- \rightarrow J/\psi \rightarrow N^* \bar{N}$ at pp machines, e.g. LHC

e.g. $\Xi_b^{*\,-} \rightarrow \Xi_b^- \pi^+ \pi^-$ (LHCb, CMS)

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Outline

- Introduction and Motivation
 Experimental Studies of Baryons
- Spectroscopy of Nucleon Resonances
- 3 Baryon Spectroscopy at GlueX
 - The GlueX Experiment
 - Nucleon Resonances
 - The Study of Strangeness –1 Hyperons
 - Spectroscopy of E Resonances
- 4 Summary and Conclusions

ヘロト ヘヨト ヘヨト ヘ

Spectrum of N^{*} Resonances

Mass [MeV]

S. Capstick & N. Isgur, Phys. Rev. D34 (1986) 2809

Volker Credé

Baryon Spectroscopy at JLab

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

V.C. & W. Roberts, Rep. Prog. Phys. 76 (2013)

Volker Credé

Baryon Spectroscopy at JLab

2022

* *

* *

ی بی ب

* * * *

・ロト ・ 同ト ・ ヨト ・ ヨト

13/2 -

э

* * * *

Table representing CLAS@JLab measurements

	σ	Σ	Т	Р	Е	F	G	Н	$T_{x'}$	$T_{z'}$	$L_{x'}$	$L_{z'}$	<i>O_{x'}</i>	0 _{z'}	$C_{x'}$	$C_{z'}$
					1		/	•	Proton	targets						
$p \pi^0$	√	√	✓	(🗸)	\checkmark	✓	\mathbf{V}	· 🗸								
$n \pi^+$	1	1	✓	(🗸)	\checkmark	\checkmark	\checkmark	\checkmark	~	🖉 pul	olishe	b				
pη	√	 Image: A second s	✓	(🗸)	\checkmark	\checkmark	\checkmark	\checkmark	v	aco	quired	or und	der ana	alysis		
$p \eta'$	 Image: A second s	 Image: A second s	\checkmark	(🗸)	\checkmark	\checkmark	\checkmark	\checkmark			•			•		
$p \omega (\phi)$	 Image: A second s	 Image: A second s	\checkmark	(🗸)	\checkmark	\checkmark	\checkmark	\checkmark	Те	nsor p	olariza	ation, S	SDME	s, /☉, l	/ ^s , / ^c , e	etc.
$K^+ \Lambda$	1	1	~	\checkmark	\checkmark	✓	\checkmark	~	~	✓	\checkmark	✓	✓	✓	\checkmark	\checkmark
$K^+ \Sigma^0$	1	1	\checkmark	\checkmark	\checkmark	✓	\checkmark	✓	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
${\cal K}^0 \Sigma^+$	 Image: A start of the start of	 Image: A second s	✓	\checkmark	✓	\checkmark	✓	\checkmark	~	✓	✓	\checkmark	<	✓	<	\checkmark
								Ne	eutron (d	euteron)	targets					
<i>p</i> π ⁻	~	1	1		✓		✓									
$K^+ \Sigma^-$	 ✓ 		\checkmark	\checkmark	\checkmark	✓	\checkmark									
$K^0 \Lambda$	~	 Image: A second s	\checkmark	\checkmark	√*	\checkmark	\checkmark	\checkmark	~	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	~	\checkmark
$K^0 \Sigma^0$	 ✓ 	 Image: A second s	✓	✓	√*	✓	\checkmark	✓	✓	✓	\checkmark	\checkmark	✓	✓	✓	\checkmark
In add	lition	, two	-me	son re	actio	ns ai	re be	ing a	analyz	zed:					* publ	ished
$\gamma p \rightarrow$	(<i>pρ</i>	$) \rightarrow$	$p\pi^+$	π^- (C	LAS)	, γ	$p \rightarrow$	$p \pi^0$	π^0 ,	$p \pi^0 \eta$	ρ π	⁰ ω (Ε	ELSA,	MAM	I, etc.))
											< □	• • •	→ ★ Ξ	► < Ξ)	- E	590

Table representing CLAS@JLab measurements

	σ	Σ	Т	Р	Е	F	G	Н	$T_{x'}$	$T_{z'}$	$L_{x'}$	$L_{z'}$	<i>O_{x'}</i>	$O_{z'}$	$C_{x'}$	$C_{z'}$
									Proton	targets						
$p \pi^0$	1	√	✓	(🗸)	✓	✓	✓	✓								
$n \pi^+$	 Image: A second s	 Image: A start of the start of	\checkmark	(🗸)	\checkmark	\checkmark	\checkmark	\checkmark	v	pu	blishe	d				
pη	 Image: A set of the set of the	√	✓	(🗸)	\checkmark	✓	✓	\checkmark	v	ac	quired	or und	der ana	alysis		
$p \eta'$	 Image: A second s	 Image: A second s	\checkmark	(🗸)	\checkmark	\checkmark	\checkmark	\checkmark								
$p \omega (\phi)$	\checkmark	\checkmark	\checkmark	(🗸)	\checkmark	\checkmark	\checkmark	\checkmark	Те	nsor p	olariza	ation, S	SDME	s, I⊙, I	I ^s , I ^c , €	etc.
$K^+ \Lambda$	1	1	\checkmark	\checkmark	✓	✓	✓	 Image: A second s	\checkmark	<	✓	✓	\checkmark	\checkmark	\checkmark	\checkmark
$K^+ \Sigma^0$	 Image: A second s	1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
$K^0 \Sigma^+$	 Image: A second s	 Image: A second s	✓	\checkmark	✓	✓	✓	✓	✓	✓	✓	✓	\checkmark	✓	\checkmark	✓
								Ne	eutron (d	euteron) targets					
<i>p</i> π ⁻	~	 ✓ 			~		~									
$K^+ \Sigma^-$	 ✓ 	 Image: A second s	\checkmark	✓	\checkmark	\checkmark	\checkmark									
$K^0 \Lambda$	~	 ✓ 	✓	\checkmark	✓*	✓	✓	\checkmark	✓	✓	\checkmark	\checkmark	~	\checkmark	✓	✓
$K^0 \Sigma^0$	 Image: A start of the start of	 Image: A second s	✓	✓	✓*	✓	✓	✓	✓	✓	✓	✓	✓	<	✓	✓

Additional presentations from ELSA:

* published

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

A. Thiel [CBELSA/TAPS], Monday, 2:00 - 2:30 | T. Jude [BGOOD], Thursday, 4:50 - 5:10.

Cross Sections for $\gamma p \rightarrow K^0 \Sigma^+ \rightarrow p \pi^+ \pi^- \pi^0$

2300

Observables in $\vec{\gamma} p \rightarrow p \omega$ (CLAS-g12)

T. Hu, Z. Akbar, V. C. et al. [CLAS Collaboration], submitted to Physical Review.

Volker Credé Baryon Spectroscopy at JLab

э

Observables in $\vec{\gamma} p \rightarrow p \omega$ (CLAS-g12)

T. Hu, Z. Akbar, V. C. et al. [CLAS Collaboration], submitted to Physical Review.

Volker Credé Baryon Spectroscopy at JLab

э

The GlueX Experiment Nucleon Resonances The Study of Strangeness —1 Hyperons Spectroscopy of Ξ Resonances

Outline

- Introduction and Motivation
 - Experimental Studies of Baryons
- 2 Spectroscopy of Nucleon Resonances
- Baryon Spectroscopy at GlueX
 - The GlueX Experiment
 - Nucleon Resonances
 - The Study of Strangeness –1 Hyperons
 - Spectroscopy of E Resonances
- 4 Summary and Conclusions

ヘロト ヘアト ヘヨト ヘ

The GlueX Experiment Nucleon Resonances The Study of Strangeness –1 Hyperons Spectroscopy of Ξ Resonances

Spectrum of *N*^{*} **Resonances**

N	(D, L_N^P)	S	J^P		Octet M	embers		Singlets
)	$(56, 0^+_0)$	$\frac{1}{2}$	$\frac{1}{2}^{+}$	N(939)	$\Lambda(1116)$	$\Sigma(1193)$	$\Xi(1318)$	-
1	$(70, 1_1^-)$	1 2 3	$\frac{1}{2}^{-}$ $\frac{3}{2}^{-}$ $\frac{1}{2}^{-}$	N(1535) N(1520) N(1650)	$\Lambda(1670) \\ \Lambda(1690) \\ \Lambda(1800)$	$\Sigma(1620) \\ \Sigma(1670) \\ \Sigma(1750)$	$\Xi(1690) \\ \Xi(1820)$	$\Lambda(1405)$ $\Lambda(1520)$ -
		2	$\frac{\frac{3}{3}}{\frac{5}{2}}$	N(1700) N(1675)	Λ(1830)	$\Sigma(1775)$		-
2	$(56, 0^+_2)$ $(70, 0^+_2)$	$\frac{1}{2}$ $\frac{1}{2}$ $\frac{3}{2}$	$\frac{1}{2}^{+}$ $\frac{1}{2}^{+}$ $\frac{1}{2}^{+}$	N(1440) N(1710)	$\begin{array}{l} \Lambda(1600) \\ \Lambda(1810)^{\dagger} \end{array}$	$\begin{array}{l} \Sigma(1660) \\ \Sigma(1770)^{\dagger} \end{array}$		-
	$(56, 2^+_2)$	2 1 2	$\frac{2}{3} + \frac{2}{5} + \frac{2}{5}$	$N(1720)^{\dagger}$ N(1680)	$\Lambda(1890)^{\dagger} \Lambda(1820)^{\dagger}$	$\Sigma(1840)^{\dagger}$ $\Sigma(1915)^{\dagger}$		-
	$(70, 2^+_2)$	$\frac{1}{2}$	$\frac{\frac{3}{2}}{\frac{5}{2}}$ +	N(1860)				
		32	$\frac{1}{2}^{+}$ $\frac{3}{2}^{+}$ 5^{+}	N(1880) $N(1900)^{\dagger}$	1 (0110)†	$\Sigma(2080)^{\dagger}$		-
	$(20, 1^+_2)$	1/2	$\frac{\frac{1}{2}}{\frac{1}{2}}$ +	N(2000) N(1990) $N(2100)^{\dagger}$	$\Lambda(2110)^{*}$ $\Lambda(2020)$	$\Sigma(2070)^{\dagger}$ $\Sigma(2030)^{\dagger}$		_
			$\frac{\overline{3}^{+}}{\frac{5}{2}^{+}}$	$N(2040)^{\dagger}$	_	_	_	

V.C. & W. Roberts, Rep. Prog. Phys. 76 (2013)

《曰》《曰》《臣》《臣》 []

Volker Credé

Baryon Spectroscopy at JLab

The GlueX Experiment Nucleon Resonances The Study of Strangeness -1 Hyperons Spectroscopy of Ξ Resonances

The GlueX Collaboration

- ~ 135 members, 29 institutions (Armenia, Canada, Chile, China, Germany, Greece, Russia, UK, USA)
- GlueX phase-I complete (120 PAC days)
- First physics published in 2017

The GlueX Experiment Nucleon Resonances The Study of Strangeness -1 Hyperons Spectroscopy of Ξ Resonances

GlueX Presentations at MENU 2023

- Justin Stevens, this session
- William Imoehl, Thursday, 3:10 3:30
- Farah Afzal, Thursday, 5:30 5:50
- R. Schumacher, Thursday, 5:30 5:50

The GlueX Experiment Nucleon Resonances The Study of Strangeness −1 Hyperons Spectroscopy of Ξ Resonances

The GlueX Experiment: Photon Beamline

The GlueX Experiment Nucleon Resonances The Study of Strangeness –1 Hyperons Spectroscopy of Ξ Resonances

N* Spectroscopy at GlueX

GlueX is not the ideal experiment for N^* spectroscopy without a polarized target. However,

- N^* resonances are abundantly produced at $E_{\gamma} > 7$ GeV.
- Interesting program on *N*^{*} physics is possible.

Data selection:

- General cuts to improve overall event kinematics (CL, missing mass, etc.).
- No cuts (yet) to enhance $\gamma p \rightarrow \eta' N(1535)$ production.

Possibly, direct access to $N(1535)\frac{1}{2}$ due to *t*-channel production.

ヘロト ヘヨト ヘヨト ヘ

Volker Credé

Baryon Spectroscopy at JLab

The GlueX Experiment Nucleon Resonances The Study of Strangeness –1 Hyperons Spectroscopy of Ξ Resonances

N* Spectroscopy at GlueX

Courtesy Edmundo Barriga, FSU

Reaction: $\gamma p \rightarrow p \eta \omega$

Data selection:

- General cuts to improve overall event kinematics (CL, missing mass, etc.).
- 8.2 GeV $< E_{\gamma} <$ 8.8 GeV

● -*t* < 0.6 GeV²

• No cuts (yet) to enhance $\gamma p \rightarrow \omega N(1535)$ production.

Possibly, direct access to $N(1535)\frac{1}{2}$ due to *t*-channel production.

イロト イポト イヨト イヨト

The GlueX Experiment Nucleon Resonances The Study of Strangeness −1 Hyperons Spectroscopy of Ξ Resonances

N(1535) BREIT-WIGNER WIDTH

イロト イポト イヨト イヨト

N* Spectroscopy at GlueX

Courtesy Edmundo Barriga, FSU

The GlueX Experiment Nucleon Resonances The Study of Strangeness −1 Hyperons Spectroscopy of Ξ Resonances

QCD Phases and the Study of Baryon Resonances

RPP (*u*, *d*, *s*, *c*) baryons not sufficient to describe freeze-out behavior. (e.g. A. Bazavov *et al.*, PRL **113** (2014) 7, 072001)

Volker Credé Baryon Spectroscopy at JLab

The GlueX Experiment Nucleon Resonances The Study of Strangeness −1 Hyperons Spectroscopy of Ξ Resonances

Spin and Parity Measurement of the $\Lambda(1405)$ Baryon

K. Moriya et al. [CLAS Collaboration], Phys. Rev. Lett. 112, 082004 (2014)

Data for $\gamma p \rightarrow K^+ \Lambda(1405)$ support $J^P = \frac{1}{2}^-$

- Decay distribution of Λ(1405) → Σ⁺π⁻ consistent with J = 1/2.
- Polarization transfer, \vec{Q} , in $Y^* \to Y\pi$:
 - S-wave decay: \vec{Q} independent of θ_Y

< 口 > < 同

The GlueX Experiment Nucleon Resonances The Study of Strangeness −1 Hyperons Spectroscopy of Ξ Resonances

The $\Lambda(1405)/\Lambda(1520)$ Baryons at CLAS / GlueX

- Measurement of the Σπ photoproduction line shapes near the Λ(1405)
 K. Moriya *et al.* [CLAS Collaboration], Phys. Rev. C 87, no. 3, 035206 (2013)
 - More coming from GlueX on $\Lambda(1405)\to\Sigma^0\pi^0$

- Description based on
 (1) interfering rel. Breit-Wigners with Flatté amplitudes plus
 (2) incoherent Λ(1520), and
 - (3) further backgrounds.
- Preliminary fit results support the two-pole structure.

ヘロト ヘアト ヘヨト ヘ

э

The GlueX Experiment Nucleon Resonances The Study of Strangeness −1 Hyperons Spectroscopy of Ξ Resonances

The $\Lambda(1405)/\Lambda(1520)$ Baryons at CLAS / GlueX

- Measurement of the Σπ photoproduction line shapes near the Λ(1405) K. Moriya *et al.* [CLAS Collaboration], Phys. Rev. C 87, no. 3, 035206 (2013)
- Consider the provided and the provided

The GlueX Experiment Nucleon Resonances The Study of Strangeness −1 Hyperons Spectroscopy of Ξ Resonances

The $\Lambda(1405)/\Lambda(1520)$ Baryons at CLAS / GlueX

- Measurement of the Σπ photoproduction line shapes near the Λ(1405)
 K. Moriya *et al.* [CLAS Collaboration], Phys. Rev. C 87, no. 3, 035206 (2013)
- Measurement of SDMEs in Λ(1520) photoproduction at 8.2–8.8 GeV S. Adhikari *et al.* [GlueX Collaboration], Phys. Rev. C 105, no. 3, 035201 (2022)

Volker Credé

Baryon Spectroscopy at JLab

The GlueX Experiment Nucleon Resonances The Study of Strangeness –1 Hyperons Spectroscopy of Ξ Resonances

The Ξ^* and Ω^* Spectrum from Lattice QCD

Exhibits broad features expected of $SU(6) \otimes O(3)$ symmetry

→ Counting of states of each flavor and spin consistent with QM for the lowest negative- and positive-parity bands.

The GlueX Experiment Nucleon Resonances The Study of Strangeness -1 Hyperons Spectroscopy of E Resonances

Excited Ξ* States: 1500 - 1750 Mass Region

From the paper: Although a small enhancement is observed in the $\Xi^0 \pi^-$ invariant mass spectrum near the controversial 1-star $\Xi^-(1620)$ resonance, it is not possible to determine its exact nature without a full partial wave analysis.

[CLAS], Phys. Rev. C 76, 025208 (2007)

The GlueX Experiment Nucleon Resonances The Study of Strangeness -1 Hyperons Spectroscopy of E Resonances

Possible Production Mechanisms

The GlueX Experiment Nucleon Resonances The Study of Strangeness -1 Hyperons Spectroscopy of E Resonances

Possible Production Mechanisms

 $K^{+}(\Xi^{-}K^{+}), \ K^{+}(\Xi^{0}K^{0}), \ K^{0}(\Xi^{0}K^{+})$

→ Cross sections, beam asymmetries (similar to $p \pi \pi \& p KK^*$)

At other facilities (for comparison):

$K^- p ightarrow K^+ \Xi^{*-}$	J-PARC (2029?)
${\it K}_L p ightarrow {\it K}^+ \Xi^{*0}$	Hall D (2026/30?)
$pp ightarrow \Xi^* X$	LHCb
$\overline{p} p o \Xi^* \overline{\Xi}$	$\overline{P}ANDA?$
$e^+ e^- ightarrow \Xi^* X$	Belle II, BES III

* W. Roberts et al., Phys. Rev. C 71, 055201 (2005)

The GlueX Experiment Nucleon Resonances The Study of Strangeness -1 Hyperons Spectroscopy of E Resonances

GlueX: Cross Sections in $\gamma p \rightarrow K^+ K^+ \Xi (1320)^-$

Volker Credé

Measurements of

- Differential cross sections
- Polarization observables
- Mass, width, spin

ヘロア 人間 アメヨア 人口 ア

Baryon Spectroscopy at JLab

The GlueX Experiment Nucleon Resonances The Study of Strangeness –1 Hyperons Spectroscopy of Ξ Resonances

GlueX: Cross Sections in $\gamma p \rightarrow K^+ K^+ \equiv (1320)^-$

Volker Credé Baryon Spectroscopy at JLab

э

Outline

- Introduction and Motivation
 - Experimental Studies of Baryons
- 2 Spectroscopy of Nucleon Resonances
- Baryon Spectroscopy at GlueX
 - The GlueX Experiment
 - Nucleon Resonances
 - The Study of Strangeness –1 Hyperons
 - Spectroscopy of E Resonances

• • • • • • • • • • • •

Open Issues in (Light) Baryon Spectroscopy

- What are the relevant degrees of freedom in (excited) baryons?
 - → Can the high-mass states be described by the dynamics of three flavored quarks? To what extent are diquark correlations, gluonic modes or hadronic degrees of freedom important in this physics?
- Can we identify unconventional states in the strangeness sector, e.g. a Λ(1405) or N(1440)? What is the situation with the (20, 1⁺₂)?
- What is the nature of non-quark contributions, e.g. meson-baryon cloud or dynamically-generated states?
 - Probe the running quark mass and determine the relevant degrees of freedom at different distance scales.
- How do nearly massless quarks acquire mass? (as predicted in DSE and LQCD)

Summary and Conclusions

N(1440

Ν

(udu)

[MeV] ™ ²²⁰

0

A(1600)

٨

(uds)

Spectroscopy of (low-mass) \equiv resonances very important to understand the systematics of the baryon spectrum:

• What about the properties of the $\Xi(1620) / \Xi(1690)$ states?

 $\Lambda_{c}(2765)$

 Λ_c

(udc)

- Is the Ξ(1620) more than one state? Is the Ξ(1620) the doubly strange partner of the Λ(1405)?
- Where is the radial excitation of the Ξ(1320)?

Σ(1660)

Σ

(uds)

Light baryons

Ξ(1950) Ξ(1820)

E(1690)

(uss)

Ouark content

Heavy baryons Heavy baryons Radial Excitations (Roper-like states) for the octet members with $J^P = \frac{1}{2}^+$

Arifi et al., PRD 105, 094006

æ

ヘロト 人間 ト ヘヨト ヘヨト

Ξc

(usc)

 Λ_b

(udb)

Opportunities with Secondary K_L^0 Beams in Hall D

Possible reactions to be studied (elastic and charge-exchange reactions):

- 2- & 3-body reactions producing S = -1 hyperons
- 2-body reactions producing S = -2 hyperons
 → K_l⁰ p → K⁺ Ξ⁰; π⁺K⁺ Ξ⁻; K⁺ Ξ^{0*}; π⁺K⁺ Ξ^{-*}
- 3-body reactions producing S = -3 hyperons $\rightarrow K_L^0 p \rightarrow K^+ K^+ \Omega^-; K^+ K^+ \Omega^{-*}$

Volker Credé

Baryon Spectroscopy at JLab

 $\overline{K}^{0} p \rightarrow K^{+} \Xi^{0}$

GlueX - 10 d

160