Conveners
Polarized Targets: Welcome
- Paolo Lenisa (University of Ferrara and INFN)
Polarized Targets
- Andreas Thomas
Polarized Targets
- Kurt Aulenbacher
Polarized Targets
- Joe Grames (Jefferson Lab)
Polarized Targets
- Alexander Nass (Forschungszentrum Jülich, Germany)
Polarized Targets
- Frank Rathmann (Forschungszentrum Jülich)
Polarized Targets
- Hartmut Dutz (Physikalisches Institut Universität Bonn)
Fixed-target pp and pA collisions with a proton beam at the TeV scale provide unique laboratories for the study of the nucleon’s internal dynamics and, more in general, for the investigation of the complex phenomena arising in the non-perturbative regime of QCD. Due to the substantial boost of the reaction products in the laboratory frame, fixed-target collisions allow to access the poorly...
The LHCspin project aims at unpolarized (SMOG2) and polarized fixed-target measurements by means of a gas target upstream of the LHCb detector, close to the vertex detector VELO. The forward geometry of the LHCb spectrometer (2 < 𝜂 < 5) allows for the reconstruction of particles produced in fixed-target collisions, with center-of-mass energies ranging from √sNN = 72 GeV with Pb beam and √sNN =...
A new dynamically polarized target of irradiated ammonia (NH$_3$ and ND$_3$) has been constructed for use with the CLAS12 spectrometer system in Hall B at Jefferson Lab. The new target is used to polarize protons and deuterons in the longitudinal orientation at a temperature of 1 K and a field of 5 T. Its first use with CLAS12 includes measurements of spin structure functions via deep...
Polarized $^3$He nuclear targets have been invaluable surrogates for polarized neutron targets in spin-dependent scattering studies of the quark and gluon structure of matter. Traditional polarized $^3$He targets have seen dramatic improvements in the last three decades, however they have been limited in their use in spectrometers that utilize high-magnetic-field tracking systems, such as...
The relaxation times of protons and deuterons in a frozen-spin hydrogen-deuteride (HD) target are more than 1 year under the normal experimental conditions (T ~ 0.1 K and B ~ 1 T). These targets have been used successfully for photoproduction experiments both at CLAS in Jefferson Lab (JLab) and at LEGS in Brookhaven Lab. In order to explore its performance under...
Constant current continuous wave Nuclear Magnetic Resonance (NMR) has
been an essential tool for polarized target experiments in Nuclear and
High-energy physics. Q-meter based phase-sensitive detection can provide
accurate monitoring of the polarization over the course of a scattering
experiment with limitations due to some operational parameters. In this talk,
we present recent studies...
The Gerasimov-Drell-Hearn (GDH) sum rule states that the difference between the parallel and antiparallel cross sections of a polarized photon hitting a polarized target is proportional to the square of the anomalous magnetic moment of the target. We plan to use the GDH sum rule to study the nuclear structure of the deuteron. To do that, we put our target material into a Frozen Spin setup,...
The nuclear spin polarization of solid-state targets is determined by magnetic nucleon resonance using the Q-meter technique. In this lecture, the possibility of replacing this Q-meter with a "cheap" vector-network analyzer will be presented.
CryPTA (Cryogenic Polarized Target Applications) is a joint research activity of the European Research Association for Hadron Physics STRONG2020 and deals with developments in the field of polarized solid-state targets. Our focus is on the development of active polarized target technologies and the further development of superconducting coils for applications in the polarized target and...
T-shape cells fed with polarized hydrogen or deuterium atoms were used at several storage rings like COSY, DESY or IUCF to serve as polarized internal targets. To avoid polarization losses of the stored atoms, e.g. by recombination into molecules, different surface materials are used to solve these problems. For example, aluminum with its ceramic monolayer of aluminum oxide, Teflon or a water...
The COMPASS experiment at CERN is using a transversely solid polarized deuteron target with a muon beam to measure the TMD PDFs in SIDIS in 2022.
The target system consists of a 50 mK dilution refrigerator, a 2.5 T solenoid magnet, three sets of 70 GHz microwave system. Solid $^6$LiD beads of the target material was contained in 3-target-cell of 30-60-30 cm long with a 3 cm diameter. The...
In the neutron p-resonant absorption of $^{139}$La, it is known that the Parity Non-Conservation effect (PNC) is enhanced by a factor of 10$^{6}$ compared to the nucleon-nucleon scattering. According to recent experiments with neutron-gamma reactions in $^{139}$La, it is highly possible that violating effects of the Time-reversal symmetry is also amplified with the similar mechanism of the PNC...