Beamdumps – the physics case. ... or why 'half a collider' can be 'beyond colliders'...

Kai Schmidt-Hoberg

Disclaimer: experts in the audience

- Standard Model incomplete but LHC has seen nothing (except the Higgs)
- > New physics may be light and weakly coupled (which is why we are here...)

- Standard Model incomplete but LHC has seen nothing (except the Higgs)
- > New physics may be light and weakly coupled (which is why we are here...)

- Standard Model incomplete but LHC has seen nothing (except the Higgs)
- > New physics may be light and weakly coupled (which is why we are here...)
- Many experimental searches look for the mediator (e.g. dark photon), which typically is unstable (and therefore not DM)

- Standard Model incomplete but LHC has seen nothing (except the Higgs)
- > New physics may be light and weakly coupled (which is why we are here...)
- Many experimental searches look for the mediator (e.g. dark photon), which typically is unstable (and therefore not DM)
- > light mediators offer the possibility to obtain large DM self-interactions

SIDM could resolve e.g. Cusp vs. core problem

- Standard Model incomplete but LHC has seen nothing (except the Higgs)
- > New physics may be light and weakly coupled (which is why we are here...)
- Many experimental searches look for the mediator (e.g. dark photon), which typically is unstable (and therefore not DM)
- light mediators offer the possibility to obtain large DM self-interactions
- > What are typical signatures at beam dumps?

> Guidance: Dark matter relic abundance

> Guidance: Dark matter relic abundance

Annihilation s or p-wave

Annihilation s or p-wave

 $m_A < m_{DM}$

> Guidance: Dark matter relic abundance

s-wave strongly constrained!

 $m_A < m_{DM}$

> Guidance: Dark matter relic abundance

Annihilation s or p-wave, need sizable couplings to SM

Annihilation s or p-wave, SM coupling (almost) unconstrained can be Sommerfeld enhanced

 $m_A < m_{DM}$

> Guidance: Dark matter relic abundance

Annihilation s or p-wave, need sizable couplings to SM

Annihilation s or p-wave, SM coupling (almost) unconstrained can be Sommerfeld enhanced

Beam dumps ideal to explore light and weakly coupled new physics:

Mediator

very large luminosities

Violbla

• very low backgrounds (e.g. CHARM had zero events)

Suidance: Dark matter relic abundance

Annihilation s or p-wave, need sizable couplings to SM

Annihilation s or p-wave, SM coupling (almost) unconstrained can be Sommerfeld enhanced

A beam dump from a theorist's perspective

SHiP – Search for Hidden Particles

SHiP – Search for Hidden Particles

MESA – Mainz Energy-Recovering Superconducting Accelerator

Achim Denig (Mainz)

٦

Electrons with Emax = 155 MeV (below pion threshold – no neutrino background)

Plan: Go through different BSM scenarios at beam-dumps

Portal couplings

$$\mathcal{L} \supset \begin{cases} -\frac{\epsilon}{2\cos\theta_W} B_{\mu\nu} F'^{\mu\nu} , & \text{vector portal} \\ (\mu\phi + \lambda\phi^2) H^{\dagger}H , & \text{Higgs portal} \\ y_n LHN , & \text{neutrino portal} \\ \frac{a}{f_a} F_{\mu\nu} \widetilde{F}^{\mu\nu} , & \text{axion portal.} \end{cases} \quad \text{Dim 5}$$

- > dark photons
- scalar and pseudoscalar mediators
- Heavy neutral leptons
- > ALPs
- Other scenarios (SUSY...)
- > A few words on German contributions

- Extra U(1)s appear in many BSM constructions
- > could couple to the SM via mixing (kinetic or mass mixing) or with direct couplings (but anomalies...).
- > Kinetic mixing: Photon-like couplings for light A' (Decay to ee, $\mu\mu$, $\pi\pi$, ...)
- > Naive estimate for GUTs: $\epsilon \sim 10^{-3}$ (10⁻⁶) for one (two) loop processes
- > A' can mediate DM interactions

Meson decay: $\pi \rightarrow \gamma A'$ etc

- Some additional interest because of (g-2).
- > Various production modes depending on environment

Bremsstrahlung: $eZ \rightarrow eZA'$ (or $pZ \rightarrow pZA'$)electron/proton beam dumpAnnihilation: $ee \rightarrow \gamma A'$ electron beam dumpDrell-Yan: $qq \rightarrow A'$ proton beam dump

proton beam dump

> $m_A < 2 m_{DM}$: visible decays.

(g-2) excluded for kinetic mixing

> $m_A < 2 m_{DM}$: visible decays.

> $m_A < 2 m_{DM}$: visible decays.

MESA reach

> $m_A < 2 m_{DM}$: visible decays.

> SHiP in very different region of parameter space compared to all others How low should we probe? no 'thermal target' as relic is set by α_D

DM/

`\ A

DM

Heavy neutral leptons

- Simple model which can account for dark matter, baryogengesis and inflation? (ask A Ringwald for SM*A*S*H)
- > Different models. Prominent example

vMSM: T.Asaka, M.Shaposhnikov (2005)

Neutrino masses via seesaw N1 (O(keV) mass) as Dark Matter N2,3 (O(GeV mass) generate Neutrino masses and η

Higgs-inflation

> Production via mixing with active neutrinos

Heavy neutral leptons

> Parameter space

HNL mass (GeV)

Scalar mediator

- Scalar mediators naturally present in extended Higgs sectors with singlets → typically Yukawa-like coupling structure
- Strong constraints from DM direct detection experiments
- > No indirect detection (p-wave)

Pseudoscalar mediator

- > Pseudoscalar mediators naturally present in extended Higgs sectors with singlets
- No constraints from DM direct detection experiments
- Indirect detection (s-wave, 'Coy DM')

Pseudoscalar mediator (ALPs): photon couplings

> ALPs with dominant couplings to photons

$$-\frac{1}{4}\,g_{a\gamma}\,a\,F^{\mu\nu}\tilde{F}_{\mu\nu}$$

Photon fusion: ALP production cross section is enhanced proportional to Z^2

Other scenarios (SUSY...)

- Light weakly coupled particles also possible within SUSY (despite prejudice of heavy SUSY from minimal (C)MSSM)
- Light neutralinos possible, similar to HNL for R-parity violation
- Superpartners of axion (axino, saxion), similar to (neutralino, ALPs)
- Fields from the SUSY breaking sector (sgoldstino), g ~ 1/F

German contributions: Tracker

Slide by Heiko Lacker

Surround Background Tagger (liquid scintillator)

Slide by Heiko Lacker

Detection of BG reactions of $\nu\!/\mu$ in the walls/surroundings of the decay volume

HU Berlin: Wavelength-Shifting OMs (R&D: DFG funded)

Calorimeter

Slide by Heiko Lacker

Challenge: mass reconstruction of $\gamma\gamma$ final state w/o a-priori knowledge of vertex

Timeline

Slide by Heiko Lacker

Summary

- Overall beam dump experiments can significantly contribute to a variety of hidden sector searches and explore large regions of otherwise uncovered parameter space.
- In particular the SHiP experiment has unique potential and is very diverse

A SHiP is always safe at the shore - but that is NOT what it is built for.

- A Einstein

