Theory: Dark Matter, Axions and very weakly-interacting particles

Thomas Schwetz-Mangold

The Future of Non-Collider-Physics, Helmholtz Institute Mainz, 27. 04. 17

Beyond the SM + Λ CDM

5% Atoms 26% Dark Matter

Where is new physics?

T. Schwetz @ The Future of Non-Collider-Physics Physics, Mainz, 27.04.17

Beyond the SM + Λ CDM

observational evidences

• neutrino mass

- baryon asymmetry
- dark matter
- accelerated expansion
- cosmological density perturbations

theoretical arguments

- naturalness of the weak scale
- strong CP problem
- naturalness of the cosmological constant

Beyond the SM + ΛCDM

observational evidences

neutrino mass baryon asymmetry • dark matter accelerated expansion cosmological density perturbations

theoretical arguments

- naturalness of the weak scale
- strong CP problem
- naturalness of the cosmological constant

Challenge for particle physics

Challenge for me ...

- try to comment on few of those DM candidates
 necessarily incomplete
- give some arguments about ,,theoretical motivation" (miracles)
- will not discuss specific experimental projects (see talks later today)
- strongly personal biased apologizes...

Outline

- WIMPs (freeze-out) natural / un-natural
- FIMPs (freeze-in) gravitational, keV neutrinos
- Axions (QCD)
 ALPs, hidden photons

The WIMP hypothesis: thermal freeze-out

$$\Omega_{\rm DM} \approx \frac{2 \times 10^{-37} {\rm cm}^2}{\langle \sigma_{\rm annih} v \rangle} \approx 0.23$$

Lee, Weinberg, 1977 Bernstein, Brown, Feinberg, 1985 Scherrer, Turner, 1986

The WIMP hypothesis: thermal freeze-out

$$\Omega_{\rm DM} \approx \frac{2 \times 10^{-37} {\rm cm}^2}{\langle \sigma_{\rm annih} v \rangle} \approx 0.23$$

Lee, Weinberg, 1977 Bernstein, Brown, Feinberg, 1985 Scherrer, Turner, 1986

"typical" annihilation cross section:

$$\left\langle \sigma_{\rm annih} v \right\rangle \sim \frac{g^4}{2\pi m^2} \simeq 6 \times 10^{-37} {\rm cm}^2 \left(\frac{g}{0.1}\right)^4 \left(\frac{m}{100 \,{\rm GeV}}\right)^{-2}$$

- "Weakly Interacting Massive Particle" (WIMP)
- relation with new physics at the TeV scale

The WIMP miracle

$$\delta m_H^2 = \frac{3G_F}{4\sqrt{2}\pi^2} \left(4m_t^2 - 2m_W^2 - m_Z^2 - m_H^2\right) \Lambda^2,$$

Naturalness of the Higgs mass suggests new physics close to the EW scale.

The same physics which cures the hierarchy problem may provide DM.

The WIMP miracle

$$\delta m_H^2 = \frac{3G_F}{4\sqrt{2}\pi^2} \left(4m_t^2 - 2m_W^2 - m_Z^2 - m_H^2\right) \Lambda^2,$$

Naturalness of the Higgs mass suggests new physics close to the EW scale.

The same physics which cures the hierarchy problem may provide DM.

prime example: Supersymmetry (but there are others as well)

The WIMP miracle

observational evidences theoretical arguments neutrino mass • naturalness of the weak scale baryon asymmetry WIMP strong CP problem dark matter • naturalness of the accelerated expansion cosmological constant cosmological density perturbations

WIMP searches

direct detection

thermal freeze-out (early Univ.)

indirect detection (now)

production at colliders

WIMP searches

FERMI & MAGIC, 1601.06590

arXiv.org > hep-ph > arXiv:1703.07364

Search or Artic

Search or Articl

(Help | Advanced sea

High Energy Physics - Phenomenology

The Waning of the WIMP? A Review of Models, Searches, and Constraints

Giorgio Arcadi, Maíra Dutra, Pradipta Ghosh, Manfred Lindner, Yann Mambrini, Mathias Pierre, Stefano Profumo, Farinaldo S. Queiroz

(Submitted on 21 Mar 2017)

arXiv.org > hep-ph > arXiv:1611.00804
Search or Article
(Help | Advanced sea
High Energy Physics - Phenomenology
The last refuge of mixed wino-Higgsino dark matter
Martin Beneke, Aoife Bharucha, Andrzej Hryczuk, Stefan Recksiegel, Pedro Ruiz-Femenia
(Submitted on 2 Nov 2016)

arXiv.org > hep-ph > arXiv:1606.07609

High Energy Physics – Phenomenology

How to save the WIMP: global analysis of a dark matter model with two s-channel mediators

Michael Duerr, Felix Kahlhoefer, Kai Schmidt-Hoberg, Thomas Schwetz, Stefan Vogl

(Submitted on 24 Jun 2016 (v1), last revised 26 Sep 2016 (this version, v2))

The comparison is necessarily model dependent

T. Schwetz @ The Future of Non-Collider-Physics Physics, Mainz, 27.04.17

global parameter scan

Red: All coupling combinations are excluded by at least one constraint.

White: At least one coupling combination is compatible with all constraints.

Orange: Large values of g_q cannot reliably be excluded due to the mediator width becoming large ($\Gamma/m_{\tau'} > 0.3$).

WIMP hypothesis survives only in special corners:

• close to an s-channel resonance: $\chi\chi \rightarrow s/Z' \rightarrow SM SM$

T. Schwetz @ The Future of Non-Collider-Physics Physics, Mainz, 27.04.17

WIMP hypothesis survives only in special corners:

- close to an s-channel resonance: $\chi\chi \rightarrow s/Z' \rightarrow SM SM$
- one or both mediators are lighter than DM → ,,terminator" or ,,secluded DM"

T. Schwetz @ The Future of Non-Collider-Physics Physics, Mainz, 27.04.17

Pospelov, Ritz, Voloshin, 2007

$$\mathcal{L} = -\sum_{f=q,l,\nu} Z^{\prime\mu} \,\bar{f} \left[g_f^V \gamma_\mu + g_f^A \gamma_\mu \gamma^5 \right] f - Z^{\prime\mu} \,\bar{\psi} \left[g_{\rm DM}^V \gamma_\mu + g_{\rm DM}^A \gamma_\mu \gamma^5 \right] \psi$$

Pospelov, Ritz, Voloshin, 2007

$$\mathcal{L} = -\sum_{f=q,l,\nu} Z^{\prime\mu} \,\bar{f} \left[g_f^V \gamma_\mu + g_f^A \gamma_\mu \gamma^5 \right] f - Z^{\prime\mu} \,\bar{\psi} \left[g_{\rm DM}^V \gamma_\mu + g_{\rm DM}^A \gamma_\mu \gamma^5 \right] \psi$$

Pospelov, Ritz, Voloshin, 2007

Pospelov, Ritz, Voloshin, 2007

T. Schwetz @ The Future of Non-Collider-Physics Physics, Mainz, 27.04.17

T. Schwetz @ The Future of Non-Collider-Physics Physics, Mainz, 27.04.17

SUSY neutralino DM Example:

arXiv.org > hep-ph > arXiv:1611.00804

High Energy Physics - Phenomenology

The last refuge of mixed wino-Higgsino dark matter

Martin Beneke, Aoife Bharucha, Andrzej Hryczuk, Stefan Recksiegel, Pedro Ruiz-Femenia (Submitted on 2 Nov 2016)

SUSY neutralino DM

"adopting a less conservative approach [...] the entire parameter region [... is] in strong tension with the indirect searches" arXiv.org > hep-ph > arXiv:1611.00804

High Energy Physics - Phenomenology

The last refuge of mixed wino-Higgsino dark matter

Martin Beneke, Aoife Bharucha, Andrzej Hryczuk, Stefan Recksiegel, Pedro Ruiz-Femenia (Submitted on 2 Nov 2016)

Remarks on WIMPs

• WIMP hypothesis under scrutiny by experiment

 always possible to "hide" the WIMP but the core parameter space will be covered

Remarks on WIMPs

• WIMP hypothesis under scrutiny by experiment

- always possible to "hide" the WIMP but the core parameter space will be covered
- Where is the new physics at LHC? Does the naturalness argument for the EW scale fail?
- How attractive is the WIMP without the naturalness argument? (No miracle any more)

WIMPs without naturalness

Many many models ... (very incomplete list)

- Higgs portal DM
- DM as SU(2) x U(1) representation [minimal DM, Cirelli, Fornengo, Strumia, 05]
- Weak scale neutrino mass models linked to DM [Scotogenic Model, E. Ma, 05,...]

• many more...

WIMPs without naturalness

 freeze-out works for a wide range of mass-scales connection to weak-scale physics is lost

DM production via freeze-in (FIMP)

- particle never in thermal equilibrium
- (tiny) interactions with thermal bath produce the DM until the interaction rate << expansion
- relic abundance proportional to interaction strength

Hall, Jedamzik, March-Russel, West, 09

DM production via freeze-in (FIMP)

- works for a huge range of masses
- testability very model dependent
- many model realizations of this mechanism

R. Essig et al., 1509.01598

Nightmare scenario: gravitational interacting DM

 DM interacts only via gravity Planck scale suppressed operators:

$$\mathcal{L}_I = \frac{1}{M_{Pl}^n} \mathcal{O}_{\rm DM} \mathcal{O}_{\rm SM}$$

freeze-in mechanism can produce right amount of DM for

$${
m TeV} \lesssim m_X \lesssim 10^{11} {
m GeV}$$
 Tang, Wu, 1604.04701

Nightmare scenario: gravitational interacting DM

 DM interacts only via gravity Planck scale suppressed operators:

$$\mathcal{L}_I = \frac{1}{M_{Pl}^n} \mathcal{O}_{\rm DM} \mathcal{O}_{\rm SM}$$

freeze-in mechanism can produce right amount of DM for

$${
m TeV} \lesssim m_X \lesssim 10^{11} {
m GeV}$$
 Tang, Wu, 1604.04701

 Bi-metric gravity: consistent generalization of GR including a massless and a massive graviton → DM

Babichev, Marzola, Raidal, Schmidt-May, Urban, Veermae, von Strauss, 16

keV sterile neutrino DM matter

• it is likely that sterile neutrinos exist (which scale?)

- mixing angle required by DM is too small to be relevant for neutrino mass generation via seesaw
- simplest production mechanism (oscillations) ruled out
 - → more complicated mechanisms (resonant prod., scalar decay)

keV sterile neutrino DM matter

• it is likely that sterile neutrinos exist (which scale?)

- mixing angle required by DM is too small to be relevant for neutrino mass generation via seesaw
- simplest production mechanism (oscillations) ruled out
 - → more complicated mechanisms (resonant prod., scalar decay)

Axion DM

The strong CP problem

$$\mathcal{L}_{\theta \text{QCD}} = \frac{\theta_{\text{QCD}}}{32\pi^2} \text{Tr } G_{\mu\nu} \tilde{G}^{\mu\nu} \qquad \qquad \theta_{\text{QCD}} = \tilde{\theta}_{\text{QCD}} + \arg \det M_u M_d$$

• limit on neutron electric dipole moment:

$$\theta_{\rm QCD} \lesssim 10^{-10}$$

 requires cancellation between bare angle and contribution from quark masses at the 10⁻¹⁰ level.

Axion solution

- introduce a global U(1) symmetry (PQ)
- gets broken at high scale f_{PQ}
- axion is the p-Goldstone of the U(1)

- receives a mass by non-perturbative QCD instanton effects
- axion potential drives the theta-angle dynamically to zero

Axion solution

- introduce a global U(1) symmetry (PQ)
- gets broken at high scale f_{PQ}
- axion is the p-Goldstone of the U(1)
- receives a mass by non-perturbative QCD instanton
- axion potential drives the theta-angle dynamically to zero

plots from G. Raffelt

Karlsruher Institut für Technologie

The QCD Axion

• mass determined by PQ breaking scale:

$$m_0 \simeq \frac{m_\pi f_\pi}{f_{\rm PQ}} \frac{\sqrt{m_u m_d}}{m_u + m_d} \simeq 10^{-4} \text{ eV} \frac{6 \times 10^{10} \text{ GeV}}{f_{\rm PQ}}$$

ullet all interactions with SM suppressed by $f_{
m PQ}$

• single parameter model!

WIMP (freeze-out) Axions (ALPs)

 $\Gamma_{\mathrm{annih}} \sim H(T)$

 $m_a(T) \sim H(T)$

- Axion field starts oscillating when its mass becomes comparable to the expansion rate
- cosmic energy density behaves like non-relativistic matter

$$\rho(a) \sim f_{\rm PQ}^2 m(a_*) m_0 \overline{\theta}^2 \left(\frac{a_*}{a}\right)^3$$

WIMP (freeze-out) Axions (ALPs)

- $\Gamma_{\text{annih}} \sim H(T)$ $m_a(T) \sim H(T)$
- Axion field starts oscillating when its mass becomes comparable to the expansion rate
- cosmic energy density behaves like non-relativistic matter

$$\rho(a) \sim f_{\rm PQ}^2 m(a_*) m \overline{\theta^2 \left(\frac{a_*}{a}\right)^3} \qquad \qquad \text{misalignment angle}$$

- pre-inflation: unique misaligment angle in observable Universe → accurate prediction for given θ₀
- post-inflation: average misaligment angle, but additional contributions from domain walls and strings (difficult to calculate)

 relic abundance comparable to observed DM abundance for θ₀~I and

 relic abundance comparable to observed DM abundance for θ₀~I and

Is there an ,,axion miracle"?

$$f_{\rm PQ} \sim 10^{11} \, {\rm GeV}$$

 $m_a \sim 10^{-4} \, {\rm eV}$

the strong CP problem by itself does not point to a particular energy scale

Axion miracle? - some numerology

$$f_{\rm PQ} \sim 10^{11} \, {\rm GeV}$$

 $m_a \sim 10^{-4} \, {\rm eV}$

$$f_{\rm PQ} \sim \Lambda_{\rm seesaw}$$

associate PQ symmetry with U(I) lepton number

Axion and Majoron become identical

Langacker, Peccei, Yanagida, 1986 Ballesteros, Redondo, Ringwald, Tamarit, 2016

Axion miracle? - some numerology

$$f_{\rm PQ} \sim 10^{11} \, {\rm GeV}$$

 $m_a \sim 10^{-4} \, {\rm eV}$

$$f_{\rm PQ} \sim \Lambda_{\rm seesaw}$$

- associate PQ symmetry with U(I) lepton number
- Axion and Majoron become identical

$$m_a \sim \frac{m_\pi^2}{f_{\rm PQ}}$$
 $m_\nu \sim y^2 \frac{\langle H \rangle^2}{\Lambda_{\rm seesaw}}$ coincidence?

QCD axion parameter space

experimentally excluded, astro/cosmo excluded, sensitivity of planned experiments, "preferred" region

T. Schwetz @ The Future of Non-Collider-Physics Physics, Mainz, 27.04.17

QCD axion parameter space

experimentally excluded, astro/cosmo excluded, sensitivity of planned experiments, "preferred" region

T. Schwetz @ The Future of Non-Collider-Physics Physics, Mainz, 27.04.17

Axion-like particles (ALPs)

remember, for the QCD axion:

$$m_a \sim \frac{m_\pi^2}{f_{\rm PQ}} \qquad \qquad g_a \sim \frac{1}{f_{\rm PQ}}$$

Axion-like particles (ALPs)

remember, for the QCD axion:

Axion-like particles (ALPs)

remember, for the QCD axion:

$$m_a \sim \frac{m_\pi^2}{f_{\rm PQ}} \qquad \qquad g_a \sim \frac{1}{f_{\rm PQ}}$$

ALP: let's give up the explanation of the strong CP problem Axion \rightarrow p-Goldstone of a general U(1) other new physics to generate mass for the Goldstone

$$m_a \sim \frac{m_{\rm non-pert}^2}{f_a} \qquad \qquad g_a \sim \frac{1}{f_a}$$

mass and coupling (or f_a) become independent generic prediction in many BSM models

T. Schwetz @ The Future of Non-Collider-Physics Physics, Mainz, 27.04.17

ALP DM parameter space

$$\rho(a) \sim f_{\rm PQ}^2 m(a_*) m_0 \overline{\theta}^2 \left(\frac{a_*}{a}\right)^3$$

- ALP mass and g ~ I/f_a are now independent
- red region: viable
 DM parameter
 space

Arias, Cadamuro, Goodsell, Jäckel, Redondo, Ringwald, 12

Ultra-light scalar DM

- ALPs with m ~ 10^{-22} eV
- deBroglie wavelength becomes of order kpc (dwarf galaxy size)
- no structure smaller than this can form
- may address some issues with CDM
- ,,Fuzzy DM^{**} Hu, Barkana, Gruzinov, 2000

ALP miracle?

ALP miracle?

ALP miracle?

requiring the correct
 DM abundance for
 m ~ 10⁻²² eV and
 θ₀ ~ 1 leads to:

$$f_a \sim 10^{17} \,\mathrm{GeV}$$

 preferred range for string-motivated ALPs is between the GUT and Planck scales:

$$10^{16} \lesssim f_a \lesssim 10^{18} \,\mathrm{GeV}$$

Hui, Ostriker, Tremaine, Witten, 16

Hidden photon DM (no miracles)

$$\mathcal{L} = -\frac{1}{4} X_{\mu\nu} X^{\mu\nu} + \frac{m_{\gamma'}^2}{2} X_{\mu} X^{\mu} + \mathcal{L}_{\text{grav}} + \mathcal{L}_I,$$

$$\mathcal{L}_{\text{grav}} = \frac{\kappa}{12} R X_{\mu} X^{\mu} \qquad \mathcal{L}_{I} = -\frac{\chi}{2} X_{\mu\nu} F^{\mu\nu}$$

- light U(1) vector boson
- kinetically mixed with photon
- need to include coupling to gravity to describe cosmic evolution

Hidden photon DM

- DM production by re-alignment mechanism Nelson, Scholtz, 11, Arias et al., 12
- initial field value not bounded (because not an angular field as for ALPs) easy to accommodate observed DM abundance

• alternative production during inflation P.W. Graham, J. Mardon, S. Rajendran, 1504.02102

Hidden photon DM

Arias, Cadamuro, Goodsell, Jäckel, Redondo, Ringwald, 12

Arias, Cadamuro, Goodsell, Jäckel, Redondo, Ringwald, 12

Conclusions?

T. Schwetz @ The Future of Non-Collider-Physics Physics, Mainz, 27.04.17

- we don't need miracles but data!

T. Schwetz @ The Future of Non-Collider-Physics Physics, Mainz, 27.04.17

Conclusions?

- the game is completely open
- no clear preference from theory (some candidates more motivated than others)
- some candidates are getting really cornered → excellent prospects for discovery

Conclusions?

- the game is completely open
- no clear preference from theory (some candidates more motivated than others)
- some candidates are getting really cornered → excellent prospects for discovery

If you don't yet know where you're going, any road may take you there. [Lewis Carroll]

John Ellis, Where is particle physics going? 1704.02821

