Light flavour physics Muon and Kaon decays

Niklaus Berger

Institut für Kernphysik, Johannes-Gutenberg Universität Mainz

Non-Collider Physics Mainz, April 2017

Flavour-changing neutral currents as probes for new physics

u. c. t

- NA62 measures $K^+ \rightarrow \pi^+ \nu \overline{\nu}$ (Standard model at ~ 10⁻¹⁰)
- Mu3e searches $\mu^+ \rightarrow e^+e^-e^+$ (Standard model at ~ 10⁻⁵⁴)
- Both extremely sensitive for new physics out to very large mass scales
- Or very weakly coupled MeVish new particles
- Complementary to collider searches

Kaon decays in NA62 and beyond

Thanks to R. Wanke for all the input

NA62 at the CERN SPS

Measurement of:

 $K^{\scriptscriptstyle +} \to \pi^{\scriptscriptstyle +} \nu \overline{\nu}$

- Golden channel for physics beyond SM
- Standard model $(V_{ts} V^*_{td})$: B $(K^+ \rightarrow \pi^+ \nu \overline{\nu}) = 8 \cdot 10^{-11}$
- Previous measurement (E787/E949, 2008)

 $B(K^{+} \rightarrow \pi^{+} \nu \overline{\nu}) = (17 \pm 11) \cdot 10^{-11}$

• Complementary: KOTO (JPARC): $K_L \rightarrow \pi^0 \nu \overline{\nu}$

NA62 at the CERN SPS

Measurement of: $K^+ \rightarrow \pi^+ \nu \overline{\nu}$

- Aim for ~100 decays
- Signal/Background 5-10
- Fixed-target experiment at the SPS
- ~ 10^{13} kaon decays/year in fiducial volume
- Three years of data taking 2016-2018

29 institutes from 13 countries

German contribution, Mainz: V. Büscher, R. Wanke

- Hadron calorimeter/muon veto system
- Hodoscope for charged particles
- L1/L2 PC farm
- Data analysis

- 2017/18: 10% measurement of K⁺ $\rightarrow \pi^+ \nu \overline{\nu}$
- As much other physics as trigger allows

 Heavy neutrinos, "hidden sector" particles

Example: Dark Photon in π^0 decay

- Search for $\pi^{\scriptscriptstyle 0} \to A' \ \gamma \ with \ A' \to e^{\scriptscriptstyle +} e^{\scriptscriptstyle -}$
- Expect $10^8 \pi^0 \rightarrow \gamma e^+e^-$ decays a year
- m_{ee} resolution ~ 1 MeV
- Sensitive to $m_{A'} < 100 \; MeV$ at $\epsilon \approx 10^{\text{-3}}$

- Close collimators
- Search for long-lived neutral particles:

Dark photon: A' $\rightarrow e^+e^-$ and $\mu^+\mu^-$

- Close collimators
- Search for long-lived neutral particles:

- Close collimators
- Search for long-lived neutral particles:

- Close collimators
- Search for long-lived neutral particles
- Similar to SHiP, 5 years earlier
- Changes to detector:

Veto-detector to suppress particles upstream of decay region (Interest of Italian and Russian groups)

Preshower detector for photon direction: m_{χ} in X $\rightarrow \gamma \gamma$ (Interest of Mainz, synergy with SHiP)

KLEVER

- Measure ~ 100 $K_{L} \rightarrow \pi^{0} \nu \overline{\nu}$ events
- Signal/Background ~ 1
- Almost completely new experiment: Reuse calorimeter, but new veto system
- Proposal well-founded feasibility and financing need to be demonstrated

Searching for Lepton Flavour Violation with Mu3e

History of Lepton Flavour Violation searches

 $MEG (PSI) \\ B(\mu^+ \rightarrow e^+ \gamma) < 4.2 \cdot 10^{-13} \\ (2016)$

SINDRUM II (PSI)SINDRUM (PSI) $B(\mu^{-}Au \rightarrow e^{-}Au) < 7 \cdot 10^{-13}$ $B(\mu^{+} \rightarrow e^{+}e^{-}e^{+}) < 1.0 \cdot 10^{-12}$
(1988)

MEG (PSI) $B(\mu^{+} \rightarrow e^{+}\gamma) < 4.2 \cdot 10^{-13}$ (2016)
upgrading

SINDRUM II (PSI) $B(\mu^{-}Au \rightarrow e^{-}Au) < 7 \cdot 10^{-13}$ (2006) Mu2e/Comet SINDRUM (PSI) $B(\mu^+ \rightarrow e^+e^-e^+) < 1.0 \cdot 10^{-12}$ (1988) Mu3e

MEG (PSI) $B(\mu^{+} \rightarrow e^{+}\gamma) < 4.2 \cdot 10^{-13}$ (2016) upgrading

SINDRUM II (PSI) $B(\mu^{-}Au \rightarrow e^{-}Au) < 7 \cdot 10^{-13}$ (2006) Mu2e/Comet SINDRUM (PSI) $B(\mu^+ \rightarrow e^+e^-e^+) < 1.0 \cdot 10^{-12}$ (1988) Mu3e

- Low Energy Muon Beams PSI JPARC

Fermilab

World's most intensive proton beam

2.2 mA at 590 MeV: 1.3 MW of beam power

 $10^8 \mu$ /s available Study for $10^{10} \mu$ /s

Continuous beam

10¹¹ μ/s from 8 GeV/c protons

pulsed

Re-use part of the Tevatron infrastructure

Proton pulses every 1700 ns $> 10^{10} \mu/s$

Proton Improvement Plan-II: another 2 orders of magnitude

The Mu3e Collaboration

UNIVERSITÉ

DE GENÈVE

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

- Physics Institute, Heidelberg University
- KIP, Heidelberg University
- IPE, Karlsruhe Institute of Technology
- Institute of Nuclear Physics, JGU Mainz
- Paul Scherrer Institute
- Physics Institute, Zürich University
- Institute for Particle Physics, ETH Zürich
- UK institutes in the process of joining

- Mu3e highlights

Technical design of the Phase I Mu3e Experiment

- First large-scale use of HV-MAPS detectors
- Pixel layers just 0.1% X_0 thick
- Innovative gaseous Helium cooling
- New track fit, reconstructing all 10⁸ tracks/s on just 12 GPU computers

Technical design report presented to PSI last December

 2020+: Phase I data taking (existing beamline)
 SES: 2 · 10⁻¹⁵ after three years

• 2019: Magnet delivery, engineering run

High intensity Muon Beamline HiMB

Ongoing study at PSI

- Should provide at least $10^{10} \,\mu/s$
- Mu3e as first user
- Second beamline for µSR (solid state physics)
- Requires significant investment at PSI
- PSI managment/ Swiss government decision

Mu3e beyond $\mu \rightarrow eee$

In parallel

(partially requires filter farm extensions):

- µ → e X
 X e.g. a Familon
- $\mu \rightarrow e A' \nu \overline{\nu}$ with $A' \rightarrow e^+e^-$ A' a dark photon
- $\mu \rightarrow$ eeeee Familon induced, better with lower field

With detector modifications:

- $\mu \rightarrow e \gamma$ with photon conversion SES estimated at roughly 10⁻¹⁴
- Muonium-Antimuonium oscillations

Sensitivity to μ \rightarrow eX for $1\cdot 10^{15}$ muon stops

NA62 has an exciting program beyond $K^+ \rightarrow \pi^+ \nu \overline{\nu}$

- Rare and forbidden decays
- Beam dump mode: Mini-SHiP
- $K_{L} \rightarrow \pi^{0} \nu \overline{\nu}$ with KLEVER

Mu3e searches for $\mu \rightarrow eee$

- Phase I to start 2019
- Phase II requires high-intensity beamline at PSI
- Other rare and forbidden µ decays in parallel
- Possible $\mu \rightarrow e\gamma$ extension
- Search for Muonium oscillations

LFV, LNV decays with NA62

Channel	Violation	90% CL Limit	Experiment	NA62 Reach
$K^+ ightarrow \pi^+ \mu^+ extbf{e}^-$	LFV	< 1.3 × 10 ⁻¹¹	E865	~ 10 ⁻¹²
$K^+ \rightarrow \pi^+ \mu^- \mathrm{e}^+$	LFV	< 5.2 × 10 ⁻¹⁰	E865	~ 10 ⁻¹²
$K^+ ightarrow \pi^- \mu^+ e^+$	LFV, LNV	< 5.0 × 10 ⁻¹⁰	E865	~ 10 ⁻¹²
$K^+ \rightarrow \pi^- e^+ e^+$	LNV	< 6.4 × 10 ⁻¹⁰	E865	~ 2 × 10 ⁻¹²
$K^+ \rightarrow \pi^- \mu^+ \mu^+$	LNV	< 1.1 × 10 ⁻⁹	NA48/2	≲ 10 ⁻¹²
<i>K</i> ⁺ → μ ⁻ ν e ⁺ e ⁺	LNV	< 2.0 × 10 ⁻⁸	Geneva/Saclay	~ 5 × 10 ⁻¹²
$\pi^0 \rightarrow \mu^- e^+$	LFV	< 3.4 × 10 ⁻⁹	KTeV	≲ 10- ¹⁰
$\pi^0 ightarrow \mu^+ e^-$	LFV	< 3.8 × 10 ⁻¹⁰	KTeV	≲ 10- ¹⁰
$\pi^0 \rightarrow \mu^- \nu e^+ e^+$	LFV	< 1.6 × 10 ⁻⁶	JINR-Spec	≲ 10- ¹⁰

Non LFV/LNV decays with NA62

Channel	Motivation	90% CL Limit	Experiment
$K^+ \rightarrow \pi^+ X^0$	new particle	< 5.9 × 10 ⁻¹¹ (<i>m</i> ×=0)	E787, E949
$K^+ \rightarrow \pi^+ \chi \chi$	new particles		E949
$K^+ \rightarrow \pi^+ \pi^+ e^- v$	ΔS ≠ ΔQ	< 1.2 × 10 ⁻⁸	Geneva/Saclay
$K^+ \rightarrow \pi^+ \pi^+ \mu^- v$	ΔS ≠ ΔQ	< 3.0 × 10 ⁻⁶	Geneva/Saclay
$\pi^0 \rightarrow e^+ e^-(\gamma)$	dark photon		
$\pi^0 \rightarrow e^+ e^- e^+ e^-$	T violation	C = -0.77 ± 0.53	Samios <i>et al.</i>
$\pi^0 \rightarrow \gamma \ \gamma \ \gamma$	C violation	< 3.1 × 10 ⁻⁸	Crystal Box
$\pi^0 \rightarrow \gamma \gamma \gamma \gamma \gamma$	light scalar	< 2 × 10 ⁻⁸	Crystal Box
$\pi^0 \rightarrow v \overline{v}$	RH neutrino	< 2.7 × 10 ⁻⁷	E949

Kinematics

- 2-body decay
- Monoenergetic e^+ , γ
- Back-to-back

Kinematics

- Quasi 2-body decay
- Monoenergetic e⁻
- Single particle detected

Kinematics

- 3-body decay
- Invariant mass constraint
- $\Sigma p_i = 0$

Kinematics

- 2-body decay
- Monoenergetic e⁺, γ
- Back-to-back

Background

Accidental background

Kinematics

- Quasi 2-body decay
- Monoenergetic e⁻
- Single particle detected Background
 - Decay in orbit

Kinematics

- 3-body decay
- Invariant mass constraint
- $\sum p_{i} = 0$ Background
 - Radiative decay
- Antiprotons, pions, cosmics
 Accidental background

Fast and thin sensors: HV-MAPS

High voltage monolithic active pixel sensors - Ivan Perić

- Use a high voltage commercial process (automotive industry)
- collection via drift

- Implement logic directly in N-well in the pixel - smart diode array
- Can be thinned down to $< 50 \ \mu m$

(I.Perić NIM A 582 (2007) 876)

Mupix7, 735 mV threshold, HV = -85 V

Trigger TimeStamp Difference Distribution for Single Events

- 50 µm silicon
- 25 µm Kapton[™] flexprint with aluminium traces
- 25 µm Kapton™ frame as support
- About 1‰ of a radiation length per layer

Timing Detector: Scintillating tiles

- ~ 0.5 cm^3 scintillating tiles
- Read-out by silicon photomultipliers (SiPMs) and custom ASIC (STiC)

- Test beam with tiles, SiPMs and readout ASIC
- Timing resolution ~ 80 ps