Operation of HV-MAPS detectors in vacuum

Heinrich Leithoff

Mainz March 31, 2021

Helmholtz Institute Mainz

PANDA at FAIR

1.5 GeV/c to 15 GeV/c beam momentum, main research areas:

• Hadron spectroscopy

• Hadrons in matter

• Hypernuclei

• Nucleon structure

Precise luminosity needed \Rightarrow dedicated detector 11 m after IP

Luminosity measurement at PANDA

- Luminosity determintation from elastic scattering
- Coulomb part dominant at low momentum transfer
- Measurement at very small scattering angles (3 mrad to 8 mrad) after two magentic fields ⇒ tracking detector
- Required precision: 1% for relative and 5% for absolute luminosity
- Very sensitive to multiple scattering
- Low material budget \Rightarrow sensors in vacuum

Luminosity detector technical overview

- Sensors in secondary vacuum
- Low material budget and active cooling
- Retractable during beam tunig
- Precise position necessary
- Modular design
- Vacuum box $\sim 1\,{\rm m}$ long

Module

- Active sensors thinned to 50 μm with 20 mm $\times 20$ mm active area: up to 400 mW cm^{-2} expected
- Low material budget: active cooling outside of detector acceptance
- \Rightarrow 8 Sensors glued on a 200 μm thick CVD-diamond wafer to form a ''module''
 - Diamond: very high thermal conductivity, low material budget
 - Low viscosity glue allows thickness of ${\sim}10\,\mu\text{m}$
 - $\bullet\,$ Aluminium trace flexcables with ${<}30\,\mu\text{m}$ aluminium
 - Cooling by thermal conductivity ⇒ large thermal gradient on the module

Half Plane

- Modules clamped in aluminium heatsink
- Aluminium heatsink actively cooled by integrated cooling pipe
- First electronics needed closeby (${\sim}10\,\text{cm}$)
- $\Rightarrow\,$ PCB clamped to aluminium heatsink
 - Module placement staggered to avoid module collision

Half detector

- Four half planes connected to a half detector
- Common feedthrough for cooling lines
- Shape measured by stationary CMM → good knowledge of sensor position in half detector

Half Plane cooling

- Worst case assumption: 700 mW cm⁻² heatload from sensors, resistive losses in cables, about 50 W per half plane from electronics
- $\Rightarrow\,$ Large gradient on module: >50 °C, difference between modules <2 °C
 - Not included in simulation: transition effect between parts
 - Contact materials measured, vacuum grease is preferred

Cooling tests

- Half plane consistent with simulation
- Long term test of half detector cooling: no aging after >1000 cycles
 H. Leithoff

Concept of peripherie (feedthrough)

- \sim 2000 traces per half detector, including up to 640 LVDS pairs
- ⇒ Glued in flexcables as high density option, first test promising
 - Additional benefit in main feedthrough flange: no movement relative to the half detector
 - LV feedthrough per half detector extra, high power (~200 A) needed

Movable detector: position problems and solutions

- Half detector mounted on LSM for movement
- Problem 1: position of half detector after movement?
- $\Rightarrow\,$ Capacitive sensors in vacuum box measuring against half detector, resolution ${<}2\,\mu m$

Movable detector: position problems and solutions 2

- Problem 2: Position of the capacitive sensors in the vacuum box?
- $\Rightarrow\,$ Measurement of the sensor position relative to markers on the outside with a portable CMM (measurement arm), resolution <28 μm
 - Mechanical stability of vacuum box relevant!

Technology transfer to PRES: MicroLumi

- Based on CF200 flange, moveable by LSM
- Three modules with one sensor each, glued on diamond wafer
- Cable and diamond glued into custom flange \Rightarrow cooling and first electronics outside the vacuum (\sim 10 cm distance to sensors)

Technology Transfer to PRES: Option B

- Integrated in beampipe, no moveable parts
- Precise detector positioning and beam control needed
- Diamond wafer clamped into vacuum chamber, cooling from outside

Backup

Heat loads and simulation

Expected heat dissipation per half detector:

	sensors	resistance in	LDO Voltage	Multiplexer
		flexcables	regulator	etc.
worst case	520 W	80 W	160 W	\sim 50 W
likely case	190 W	10 W	60 W	${\sim}50{ m W}$

- simulated maximum temperature: 39 °C / 0 °C
- neglected in the simulations: material transitions, radiative effects
- additional temperature rise of 11 $^\circ\text{C}$ / 4 $^\circ\text{C}$ estimated from measurements