Status of the MuPix HV-MAPS

Niklaus Berger

Institut für Kernphysik, Johannes-Gutenberg Universität Mainz

March 2021

- High-Voltage Monolithic Active Pixel Sensors (HV-MAPS)
- Results from MuPix 10

High-Voltage Monolithic Active Pixel Sensors

Niklaus Berger – March 2021 – Slide 3

Fast and thin sensors: HV-MAPS

High voltage monolithic active pixel sensors - Ivan Perić

• Use a high voltage commercial process (automotive industry)

Fast and thin sensors: HV-MAPS

E field

High voltage monolithic active pixel sensors - Ivan Perić

• Use a high voltage commercial process (automotive industry)

N-well

P-substrate

Particle

Fast and thin sensors: HV-MAPS

High voltage monolithic active pixel sensors - Ivan Perić

- Use a high voltage commercial process (automotive industry)
- collection via drift

- Implement logic directly in N-well in the pixel - smart diode array
- Can be thinned down to $< 50 \ \mu m$

(I.Perić, P. Fischer et al., NIM A 582 (2007) 876)

The MuPix Prototypes

Developed a series of HV-MAPS prototypes

- Goal: Detection and signal processing with just 50 µm silicon
- 6th chip, MuPix7, was first full system-ona-chip
- MuPix8 was the first large sensor with 2 x 1 cm² - used for the test beams in A2 and X1
- MuPix9 was a small test chip mostly for configuration logic and voltage regulators
- MuPix10 is a large 2 x 2 cm² prototype with all features needed for Mu3e results in the following
- MuPix11 to be submitted this summer

MuPix10 Results

Niklaus Berger – March 2021 – Slide 8

Matrix [pixel]	256×250
Pixel size [µm ²]	80×80
Active area [mm ²]	20.48×20.0
ToA+ToT [bits]	11 + 5
Tuning+Masking [bits]	2x3+1
LVDS links	3+1
resisitivity [Ω cm]	20, 200

resisitivity $[\Omega \text{ cm}]$

Niklaus Berger – March 2021 – Slide 9

New Features I: Internal regulator for VSSA

- As opposed to earlier variants, the MuPix10 only needs one supply voltage of ~ 2V
- Internal regulator works

New Features II: ToT sampling with delay

- Hits are sampled on falling edge, allowing reliable ToT measurement (~ charge)
- Delay circuit to set maximum delay working - not mixup of hit chronology

Beam test at PSI

• No pixel tuning applied

Efficiency	> 99 %
Noise Rate	< 2 Hz/Pixel
Power Consumption	$< 200 \mathrm{mW/cm^2}$

Time resolution

- Raw about 13 ns
- 7.5 ns after correcting for known delays and time-walk

Issue 1: Configuration logic

- Several options for configuration
- Mu3e plans to use a single differential signal: this is not working
- Simple SPI configuration works, load signal has to be kept low
- Source likely understood and fixed different cell library (also not seen in recent submissions using same logic but correct library)

Issue 2: Early breakdown

- Thin chips hold less HV
- Understood: Depletion region reaches part of the substrate damaged by grinding
- Can maybe be improved by an etching step
- Efficiencies still good at lower HV, but some trade-off between thickness and efficiency

leakage current [μΑ]

- MuPix chips made good progress
- Should work for the TPC experiment
- Tests with MHz irradiation on small spots to be repeated once MAMI up and running again
- Chips also operated successfully in Mu3e modules with thin flexes