

Proton radius: theoretical overview and perspectives

M. Vanderhaeghen

PRES Meeting, March 30-31, 2021, Univ. Mainz

Imaging of atomic nuclei

sizes of nuclei: as revealed through elastic electron scattering

shapes of nuclei: as revealed through inelastic electron scattering deformations, coherent states

Atomic nuclei

To define and reconstruct a 3dim charge distribution of system of mass M from electron scattering: one needs to localize the system and fix its c.m.

For static (non-relativistic) systems: the 3D Fourier transform of form factors gives the distribution of electric charge and magnetization

$$G_E(Q^2) = 1 - \frac{1}{6} R_E^2 Q^2 + \mathcal{O}(Q^4) \quad \longrightarrow \quad \text{Charge radius:} \quad R_E^2 \equiv \frac{\int d^3 \vec{r} \, r^2 \, \rho_{3d}(r)}{\int d^3 \vec{r} \, \rho_{3d}(r)}$$

From nuclei to nucleons

For proton:

Compton wavelength: $1/M \sim 0.2$ fm Size of proton: $R_E \sim 0.85$ fm

Condition $1/M \ll R_E$

For relativistic systems as proton: interpretation of Fourier transform of form factors as a 3-dim charge or magnetization distribution cannot be defined precisely

Jaffe (2021)

Proton electromagnetic form factors

elastic electron-proton scatteringin the 1-photon exchange approximation:parameterized by 2 form factors (FFs)

$$\langle p + \frac{q}{2}, \lambda' | J^{\mu}(0) | p - \frac{q}{2}, \lambda \rangle = \bar{u}(p + \frac{q}{2}, \lambda') \begin{bmatrix} F_1(Q^2)\gamma^{\mu} + F_2(Q^2) \frac{i}{2M} \sigma^{\mu\nu} q_{\nu} \end{bmatrix} u(p - \frac{q}{2}, \lambda)$$
Dirac FF Pauli FF
for proton: $F_1(Q^2 = 0) = 1$ $F_2(Q^2 = 0) = \kappa_p = 1.79$
equivalently: in experiment one uses Sachs FFs with $\tau \equiv \frac{Q^2}{4M^2}$

$$\begin{pmatrix} G_M(Q^2) = F_1(Q^2) + F_2(Q^2) \\ G_E(Q^2) = F_1(Q^2) - \tau F_2(Q^2) \end{pmatrix} \longrightarrow \text{magnetic FF}$$

$$\begin{pmatrix} G_E(Q^2) = I - \frac{1}{6} \langle r_E^2 \rangle Q^2 + \mathcal{O}(Q^4) \\ \to \text{electric FF} \end{pmatrix}$$

charge radius is definition for FF slope!

In Hydrogen spectroscopy (Lamb shift): quantity which enters is also slope of G_E!

Experimental r_{Ep} determinations

from recent compilation prepared for Rev. Mod. Phys.

H.Gao, M.Vdh (2021)

PRad-II plans

PRad-II: new JLab approved experiment **Dutta et al.** (2020)

- improvement of stat. uncertainty by factor 4 in comparison to PRad
- various improvements to reduce syst. uncertainties
- Factor 3.8 reduction in overall exp. uncertainty on proton radius compared to PRad

Hadronic input to muonic atom spectroscopy program

Muonic atom spectroscopy needs nucleon/nuclear input

2S-2P

Lamb Shift:

THEORY

μH:

μ**D,** μ³He⁺, μ⁴He⁺:

$\Delta E_{TPE} \pm \delta_{theo} \ (\Delta E_{TPE})$	Ref.	$\delta_{exp}(\Delta_{LS})$	Ref.
$33 \ \mu \mathrm{eV} \pm \frac{2 \ \mu \mathrm{eV}}{2}$	Antognini et al. (2013)	$2.3 \ \mu \mathrm{eV}$	Antognini et al. (2013)
$1710 \ \mu \mathrm{eV} \pm \frac{15 \ \mu \mathrm{eV}}{15}$	Krauth et al. (2015)	$3.4 \ \mu eV$	Pohl et al. (2016)
$15.30~{ m meV}\pm 0.52~{ m meV}$	Franke et al. (2017)	$0.05 \mathrm{meV}$	
$9.34 \text{ meV} \pm \frac{0.25 \text{ meV}}{15 \text{ meV}}$	Diepold et al. (2018) Pachucki et al. (2018)	$0.05 \mathrm{meV}$	Krauth et al. (2020)
	$\Delta E_{TPE} \pm \delta_{theo} (\Delta E_{TPE})$ $33 \ \mu eV \pm 2 \ \mu eV$ $1710 \ \mu eV \pm 15 \ \mu eV$ $15.30 \ m eV \pm 0.52 \ m eV$ $9.34 \ m eV \pm 0.25 \ m eV$ $0.15 \ m eV \pm 0.15 \ m eV (2PE)$	$\Delta E_{TPE} \pm \delta_{theo} (\Delta E_{TPE}) \qquad \text{Ref.}$ $33 \ \mu\text{eV} \pm 2 \ \mu\text{eV} \qquad \text{Antognini et al. (2013)}$ $1710 \ \mu\text{eV} \pm 15 \ \mu\text{eV} \qquad \text{Krauth et al. (2015)}$ $15.30 \ \text{meV} \pm 0.52 \ \text{meV} \qquad \text{Franke et al. (2017)}$ $9.34 \ \text{meV} \pm 0.25 \ \text{meV} \qquad \text{Diepold et al. (2018)}$ $Pachuali \text{ et al. (2018)}$	$\Delta E_{TPE} \pm \delta_{theo} (\Delta E_{TPE})$ Ref. $\delta_{exp}(\Delta_{LS})$ 33 $\mu eV \pm 2 \mu eV$ Antognini et al. (2013)2.3 μeV 1710 $\mu eV \pm 15 \mu eV$ Krauth et al. (2015)3.4 μeV 15.30 meV \pm 0.52 meVFranke et al. (2017)0.05 meV9.34 meV \pm 0.25 meVDiepold et al. (2018)0.05 meV

present accuracy comparable with experimental precision

EXPERIMENT

Future: factor 5 improvement planned

present accuracy factor 5-10 worse than experimental precision

Two-photon exchange: hadronic corrections

- > Two-photon exchange (TPE): lower blob contains both elastic (nucleon) and inelastic states
- > Lamb shift: described by unpolarized amplitudes T_1 , T_2 : functions of energy v and Q^2
- > Hyperfine splitting: described by polarized amplitudes S₁, S₂
- > Imaginary parts: directly proportional to nucleon structure functions F_1 , F_2 resp. g_1 , g_2
- Real parts: obtained as dispersion integral over the imaginary parts modulo a subtraction function in case of T₁

$$\Delta E = \Delta E^{el}$$

$$+ \Delta E^{subtr}$$

$$+ \Delta E^{inel}$$
Elastic state: involves nucleon form factors
Subtraction: involves nucleon polarizabilities
Inelastic state: involves nucleon structure functions

Hadron/Nuclear physics input needed !

TPE elastic correction:

3rd Zemach moment (Jentschura '11) (Borie '12)							
Disp. Rel. (Pachucki '99) (Birse-McGovern '12)	ьня 1-4-1						
Finite-Energy SR (Gorchtein et al. '13)							
Bound-State QED (Mohr et al. '13)	+						
HBχPT LO (Nevado-Pineda '08)	⊢−−−− +						
HBχPT NLO (Peset-Pineda '14)	· · · · · · · · · · · · · · · · · · ·						
	-30 -25 -20 -15 -10 -5 0						
	_						
	ΔΕ <mark>el</mark> [μeV]						

TPE polarizability correction:

TPC program A2@MAMI: neutron polarizabilities

New A2@MAMI consisted data set (factor 5 increase of world data) in final stage of analysis → will consolidate PDG errors

- A reduction of error by factor of 2
- → precision comparable with proton
- → impact light muonic atom program

TPC program A2@MAMI: neutron polarizabilities

New A2@MAMI consisted data set (factor 5 increase of world data) in final stage of analysis → will consolidate PDG errors

- → precision comparable with proton
- → impact light muonic atom program

LS: Improved determinations of subtraction function

To improve on uncertainty due to subtraction function: 3 avenues

- > Full NLO calculation in Baryon ChPT Pascalutsa et al.
- > New formalism for lattice determination of subtraction function Pascalutsa (2020)
- > Empirical determination of Q⁴ term using dilepton production process

Hagelstein,

Empirical determination of Q⁴ term through $e^- p \rightarrow e^- p |-|^+$

$$T_1^{NB}(0,Q^2) = \beta_{M1}Q^2 + \left(\frac{1}{6}\beta_{M2} + 2\beta'_{M1} + \alpha_{\rm en}b_{3,0} + \frac{1}{(2M)^2}\beta_{M1}\right)Q^4 + \mathcal{O}(Q^6)$$

Subtraction function T₁ only empirical unknown

➤ Forward-backward asymmetry of e⁻ p → e⁻ p l⁻l⁺ : allows access to low-energy structure constant b_{3,0}

First CLAS12@JLab data on high-energy timelike Compton (2020): FB asymmetry in 10 - 30% range

Pauk, Carlson, Vdh(2020)

Dilepton photoproduction $\gamma p \rightarrow p l \cdot l^+$: proton form factor, lepton universality

- e-e+ photoproduction using active TPC + Crystal Ball @MAMI
- > full one-loop radiatively corrected amplitude needed
- > e-e+ vs μ-μ+ photoproduction: cross section ratio above/below dimuon threshold : different proton radius values correspond to 0.2% effect in ratio
- Complements ongoing muon scattering program (MUSE, COMPASS)

Radiative corrections in lepton-nucleon scattering

status of radiative corrections

Accuracy goal PRES: 0.2% absolute precision on d σ /dt

For experiment with recoil proton detection: Fadin & Gerasimov (2019)
 to 1-loop: real and virtual radiative corrections on electron side cancel both for log(Q²/m²) terms and constant terms
 beyond 1-loop: cancellation for log terms

Vacuum polarization is dominant contribution: A. Arbuzov Can be accurately calculated: 1 - 1.6 % in Q² range: 0.001 - 0.02 GeV²

Largest uncertainty from subdominant two-photon exchange between e and p

2γ-exchange at low Q²

TPE varies between 0.05% to 0.2% in Q² range: 0.001 - 0.02 GeV²

How to properly define a charge density for nucleons ?

Interpretation of nucleon form factor as density

overlap of wave function Fock components with same number of quarks

overlap of wave function Fock components with different number of quarks NO probability / charge density interpretation

absent in a light-front frame!

$$q^+ = q^0 + q^3 = \mathbf{0}$$

quark transverse charge densities in nucleon

transverse c.m. can be fixed in a light-front frame !

longitudinally polarized nucleon

$$\begin{split} \rho_0^N(\vec{b}) &\equiv \int \frac{d^2 \vec{q}_\perp}{(2\pi)^2} \, e^{-i\vec{q}_\perp \cdot \vec{b}} \, \frac{1}{2P^+} \langle P^+, \frac{\vec{q}_\perp}{2}, \lambda | J^+(0) | P^+, -\frac{\vec{q}_\perp}{2}, \lambda \\ &= \int_0^\infty \frac{dQ}{2\pi} \, Q J_0(bQ) F_1(Q^2) \end{split}$$

Soper (1997)

Burkardt (2000)

Miller (2007)

transversely polarized nucleon

$$\rho_T^N(\vec{b}) \equiv \int \frac{d^2 \vec{q}_\perp}{(2\pi)^2} e^{-i\vec{q}_\perp \cdot \vec{b}} \frac{1}{2P^+} \langle P^+, \frac{\vec{q}_\perp}{2}, s_\perp = +\frac{1}{2} |J^+(0)| P^+, -\frac{\vec{q}_\perp}{2}, s_\perp = +\frac{1}{2} |J^$$

dipole field pattern

Carlson, Vdh (2007)

spatial imaging of nucleons

23

Radii of charge distribution for nucleons

Radius of 2-dim transverse distribution of quarks of flavor q in proton:

$$\langle b^2 \rangle^q = \frac{\int d^2 \mathbf{b} \, \mathbf{b}^2 \, \rho^q(b)}{\int d^2 \mathbf{b} \, \rho^q(b)} = -4 \frac{F_1^{\prime q}(0)}{F_1^q(0)}$$

with:
$$F_1'^q(0) \equiv \frac{dF_1^q}{dQ^2}|_{Q^2=0}$$

Isospin symmetry:

$$F_{1p} = e_u F_1^u + e_d F_1^d$$
$$F_{1n} = e_u F_1^d + e_d F_1^u$$

$$\begin{pmatrix} \langle b^2 \rangle_p = \frac{4}{3} \langle b^2 \rangle^u - \frac{1}{3} \langle b^2 \rangle^d = -4F'_{1p}(0) \\ \langle b^2 \rangle_n = \frac{2}{3} \langle b^2 \rangle^d - \frac{2}{3} \langle b^2 \rangle^u = -4F'_{1n}(0) \end{cases}$$

Charge radii for proton and neutron:

		r_E^2	$-\frac{3\kappa_N}{2M^2}$	$-6F_{1}^{\prime}(0)$	$\langle b^2 angle$	
	245.234	(fm^2)	(fm^2)	(fm^2)	(fm^2)	
Cui et al.(2021)	proton (e-p)	0.717 ± 0.014		0.598 ± 0.014	0.399 ± 0.009	н
Antognini et al. (2013)	$proton (\mu H)$	0.7071 ± 0.0007	-0.1189	0.5882 ± 0.0007	0.3921 ± 0.0005	
	neutron (PDG)	-0.1161 ± 0.0022	0.1266	0.0105 ± 0.0022	0.0070 ± 0.0015	

H.Gao, M.Vdh (2021)

Summary and outlook

electron scattering:

- new PRad proton r_E result is consistent with muonic hydrogen spectroscopy value
- PRad-II aims at factor 3.8 improvement on proton charge radius rE
- Plans in Mainz: PRES, MAGIX@MESA

hadronic corrections to Lamb shift in muonic atoms:

- μH: present TPE accuracy (2 μeV) is comparable with present Lamb shift accuracy (2.3 μeV) Future plan: factor 5 improvement on LS for muonic H
- μD, μ³He⁺, μ⁴He⁺: present TPE accuracy is 5-10 times worse than Lamb shift accuracy Largest uncertainty from neutron polarizability correction

muon scattering experiments:

- Ongoing plans: MUSE@PSI, AMBER@COMPASS
- dilepton production complementary: cross section ratio above/below dimuon threshold

Theoretical understanding:

For system as proton composed of relativistic quarks and gluons:

- 3-dim charge distribution cannot be defined precisely: r_E is definition of G_E slope at origin !
- instead we can define a 2-dim transverse charge distribution
 as seen by observer which moves with speed of light, and which is obtained as integral
 over quark longitudinal momentum fraction x of partonic distributions
 we can properly define and extract the proton charge radius in this transverse plane