

A Large Ion Collider Experiment

Status report ALICE

Harald Appelshäuser Goethe Universität Frankfurt

KHuK Jahrestagung 2020

The ALICE Collaboration

Experiment (11 Teams)

- Uni Bonn
- Uni Frankfurt (4)
- Uni Heidelberg
- TU München
- Uni Münster
- Hochschule Worms
- GSI

Theory (6 Teams)

- Uni Bielefeld
- Uni Frankfurt
- TU München
- Uni Regensburg
- Uni Tübingen

Leading functions of German ALICE members:

- **Collaboration Board Chair:** Silvia Masciocchi (GSI)
- TRD Project Leader: Johanna Stachel (Uni Heidelberg)
- **O2-EPN Project Leader:** Volker Lindenstruth (Uni Frankfurt)
- TPC Project Leader: Harald Appelshäuser (Uni Frankfurt)
- Editorial Board Chair: Yvonne Pachmayer (Uni Heidelberg)
- Conference Committe Chair: Dariusz Miskowiec (GSI)
- Service Work Board Chair: Kai Schweda (GSI)

2028 2029	2030	2031	2032	2033	2034	2035	2036				
JFMAMJJASONDJFMAMJJASOND Run 4	J FMAMJ J ASONC	JFMAMJJASOND LS4	J FMAMJ J ASOND	JFMAMJJASOND Run 5	J FMAMJ J ASOND	JFMAMJJASOND LS5	J FMAMJ J ASOND				

Shutdown/Technical stop
Protons physics
Ions
Commissioning with beam
Hardware commissioning/magnet training

ALICE schedule – LS2 upgrades

2028	2029	2030	2031	2032	2033	2034	2035	2030					
FMAMJJASOND	J FMAMJ J ASON	JFMAMJJASON	JFMAMJJASONC	J FMAMJ J ASOND	J FMAMJ J ASOND	JFMAMJJASOND	JFMAMJJASONC	JFMAMJJASONI					
	Run 4		LS4		Run 5		LS5						

ALICE schedule – LS3 upgrades

2028	2029	2030	2031	2032	2033	2034	2035	2036			
JEMAMJJASONU	Run 4	JIFMAMJJASONU			Run 5	J F MAMI J ASOND		J F MANJ J ASOND			

→ improved tracking precision and forward photon measurement

ALICE schedule – a new experiment: ALICE 3

ALICE LS2 upgrades for Run 3 and 4

Goal: Pb-Pb collisions at 50 kHz, continuous readout

New Inner Tracking System

- Complementary Metal-Oxide-Semiconductor (CMOS) Monolithic Active Pixel Sensor (MAPS) technology
- Improved resolution, less material, faster readout

New TPC Readout System

- ROCs with Gas Electron Multiplier (GEM) technology
- New electronics (SAMPA), continuous readout

Integrated Online-Offline System (O²)

- Record MB Pb-Pb data at 50 kHz
 - EPN without trigger

TRD Readout Upgrade and Repair

Record MB Pb-Pb data at 50 kHz

New Fast Interaction Trigger (FIT) Detector

- Centrality, event plane Readout upgrade
- TOF, MUON, ZDC, Calorimeters

New Muon Forward Tracker (MFT)

- CMOS Pixels, MAPS technology
- Vertex tracker at forward rapidity

Run 3 and 4 physics programme: *Z. Citron, et al.*, arXiv:1812.06772 ALICE high-energy pp programme: https://cds.cern.ch/record/2724925

TRD repair and R/O upgrade

- HV-stability issues during operation in Run1/2 due to bad HV capacitors
- 9 (of 18) TRD supermodules de-installed and repaired at surface in 2019
- 80 of 83 repaired TRD chambers fully operational
- Commissioning of new TRD readout scheme for 50 kHz in Run3/4 ongoing
- Uni Heidelberg (PL) Uni Münster Uni Frankfurt GSI

: HV (anode or drift) off

red: drift HV reduced

black: FED off

Legend:

Before repair:

TPC Upgrade

SAMPA

Continuous readout at 50 kHz in Pb-Pb

- → 72 new Readout Chambers with GEMs
- → 3600 new Frontend Electronics Cards

ROC and FEC installation

March 2019 – March 2020:

- TPC moved to surface cleanroom
- old MWPC readout chambers replaced by new GEM detectors
- new readout electronics mounted and tested
- **CERN COVID-19 shutdown** March 10, 2020, 3 weeks before planned start of installation in cavern

TPC pre-commissioning

Left to right: R. Münzer (Uni F), C. Garabatos (GSI), L. Bratrud (Uni F), Y. Chatzidaki (Uni HD), C. Lippmann (GSI)

May 2020 – July 2020:

 Full functionality confirmed in extended irradiation tests with cosmics, laser, X-rays

TPC reinstallation in the ALICE cavern (August 2020)

Harald Appelshäuser - ALICE Status Report - KHuK 2020

TPC reinstallation in the ALICE cavern (August 2020)

Harald Appelshäuser - ALICE Status Report - KHuK 2020

O2 Event Processing Nodes

- EPN computing farm for synchronous event reconstruction at O(1TB/s)
- container-based computing center (CR0)
- 250 servers with 64 CPU cores and 8 GPUs each
- 100 Gb/s InfiniBand Core Network
- \rightarrow first servers at CERN end of 2020, full amount Q1 2021

CR0 EPN computing center at Point 2

۲

GPU

EPN server (1/250)

Uni Frankfurt (PL)

LS3 upgrade – Ultra-thin Inner Barrel for Run 4

3 cylindrical layers of ~7x14 cm² CMOS MAPS, 20-40 μm

• readout outside acceptance

2026

2027

2025

- no water cooling, minimal support structures
- total radiation length: R < 4 cm: 1.3% (ITS2) \rightarrow 0.3 % (ITS3)
- → R&D contributions from German groups in view of future applications

ALICE 3: A next-generation heavy-ion experiment at the LHC

- A thin, light, fast, all-silicon tracking and PID detector Input for EPPSU Process : arXiv:1902.01211 Included in Physics Briefing Book: arXiv:1910.11775
- exact con tracking and PID detector Multiply heavy-flavored hadrons: Ξ_{cc}, Ω_{cc}, Ω_{ccc}, Ω_{ccc}
 - X_{c1,2} states
 - X,Y,Z charmonium-like states (e.g. X(3872))
 - Light exotic nuclei with charmed baryons and multiple hyperons up to A=6
 - Thermal EM radiation
 - Chiral symmetry restoration
 - Soft theorems

	2031									2032												2033														
OND	J	F	М	A	М	J	J	A	S	0	N	D	J	F	Μ	A	М	J	J	A	s	0	N	D	J	F	м	A	М	J	J	A	s	0	N	D
				(LS	52																							R	u	n	5)	

- Letter of Intent in preparation for end of 2021
- Possible operation starting in Run 5
- German teams aim for significant contributions:
 - R&D for ultra-thin CMOS MAPS
 - forward soft-photon spectrometer

ALTCE

- 311 papers on arXiv
- 36 in 2020

http://alice-publications.web.cern.ch/submitted

Physics highlights: strong interaction among hadrons

- Strong interaction between hadrons accessible via momentum correlations in the final state
- LHC is a factory for unstable hadrons
- ALICE has excellent reconstruction and PID capabilities at low p_T
- → New experimental program developed for precision measurements of hadronic interactions
- → Special focus on hyperons

p-p, $p-\Lambda$, and $\Lambda-\Lambda$ correlations studied via femtoscopy in pp reactions at $\sqrt{s=7}$ TeV ALICE coll., PRC 99, 024001 (2019)

Study of the Λ - Λ interaction with femtoscopy correlations in pp and p-Pb collisions at the LHC ALICE coll., PLB 797 (2019) 134822

First observation of an attractive interaction between a proton and a cascade baryon ALICE coll., PRL 123 (2019), 112002

Scattering studies with low-energy kaonproton femtoscopy in proton-proton collisions at the LHC ALICE coll., PRL 124 (2020) 09230

Investigation of the p- Σ^0 interactions via femtoscopy in pp collisions ALICE coll., PLB 805 (2020) 35419

Search for a common baryon source in high-multiplicity pp collisions at the LHC ALICE coll., PLB 811 (2020) 135849

interaction between p- Ξ^{-} and p- Ω^{-} direct comparison to lattice QCD

important for neutron star EoS ٠

Perspectives for Run 3:

d- Λ , p- Σ , Ω - Ω

charm sector

Y-N-N interactions

 Ξ - Λ , Ξ - Σ

•

.

٠

•

Latest results: precise measurement of strong

nature

Explore our content ~ Journal information ~

nature > articles > article

Article | Published: 09 December 2020

Unveiling the strong interaction among hadrons at the LHC

ALICE Collaboration

Nature 588, 232-238(2020) Cite this article Metrics

Abstract

One of the key challenges for nuclear physics today is to understand from first principles the effective interaction between hadrons with different quark content. First successes have been achieved using techniques that solve the dynamics of guarks and gluons on discrete space-time lattices^{1,2}. Experimentally, the dynamics of the strong interaction have been studied by scattering hadrons off each other. Such scattering experiments are difficult or

Physics highlights: strong interaction among hadrons

Physics highlights: hypertriton lifetime

Hypertriton and Anti-Hypertriton measurement in Pb-Pb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV via two-body decay ALICE Coll., PLB 797 (2019) 134905

- Related to Y-N (and Y-N-N) forces
- Weakly bound ($B_{d\Lambda} \approx 130$ keV)
- \rightarrow expect value close to free- Λ lifetime
- Previous experiments report significantly smaller values
 → Hypertriton lifetime puzzle
- ALICE result is consistent with world average and free- Λ lifetime
- New ALICE preliminary result from 2018 Pb-Pb data moves closer to free-Λ lifetime
- → Run 3 and 4: lifetime with 1% accuracy, branching ratio

ALICE

- Hadron yields, also weakly bound nuclei, well described by statistical hadronization models
- Production mechanism for nuclei unclear
- Final-state coalescence of nucleons may occur

- Phase-space proximity and local conservation laws
 matter
- Coalescence and canonical statistical hadronization models indicate similar system-size dependence for deuteron production

• Hypertritons are extended objects:

 $\langle r \rangle \approx 10.6 \ {\rm fm}$

 Expect large sensitivity to production mechanism in small systems (pp)

- Phase-space proximity and local conservation laws
 matter
- Coalescence and canonical statistical hadronization models indicate similar system-size dependence for deuteron production

• Hypertritons are extended objects:

 $\langle r \rangle \approx 10.6 \text{ fm}$

 Expect large sensitivity to production mechanism in small systems (pp)

• **TRD nuclei trigger** based on high d*E*/dx signal in pp collisions from 2017 and 2018

• Hypertritons are extended objects:

 $\langle r \rangle \approx 10.6 \ {\rm fm}$

Expect large sensitivity to production mechanism in small systems (pp)

- First observation of hypertriton production in pp
- S_3 measurement with ~30% uncertainty in reach
- Run 3 and 4:
 - precision measurements of ${}^{3}_{A}H$, ${}^{4}He$ in pp, Pb-Pb - ${}^{4}_{A}H$, ${}^{4}_{A}He$, $\Lambda^{+}_{c}nn$, ...

- anti-nuclei absorption cross sections are important for indirect cosmic dark matter searches
- so far no measurements available below 10 GeV/c
- novel approach to use the ALICE detector material as absorber

ALICE *classics*

Harald Appelshäuser - ALICE Status Report - KHuK 2020

- ALICE put forward a very ambitious upgrade program for LHC Run3 and 4
- Despite COVID-19 crisis, all projects are well on track for start of Run3 in 2022
- ALICE continues to produce high-quality physics results
- Studies and R&D towards an LoI (2021) for ALICE 3 have started

