Monte-Carlo studies for the *ep*-elastic scattering

Aleksei Dziuba \ PNPI NRC KI

10th of March 2020

1

I'm going to discuss

- Some thoughts on what computer modelling of the *ep*-elastic scattering experiment should contain
- Which simplifications can be and are already done
- Which answers we've already gotten from Monte-Carlo (MC)

<u>Note:</u> Now MC is a bunch of different calculations made more like scripts, but not as a one big project (hope it will be changed soon).

Run / detector conditions for MC

- Beam model
 - *Time distribution for incoming electrons*; mean beam frequency $-f_b$;
 - 2D beam spatial distribution Gaus_x(μ_{bx}, σ_{bx})×Gaus_x(μ_{by}, σ_{by})
 - Beam direction distribution Gaus_p($\mu_{p\vartheta}, \sigma_{p\vartheta}$)×Uniform $\rho_{\rho\varphi}(-\pi, \pi)$
- Geant-4 (*detector model*) provides ionization
- TPC time resolution model
 - Drift velocities W_{d1}, W_{d2}; Recombination(r_{hit}, f_b); (x,y)-smearing(r_{hit}, f_b)
 - Accepting due to not clean gas.
 - TDC parameters:
 - N_{ch} , Δt_{ch} ; $\rightarrow t_i$ TDC channel
 - Energy to TDC response C_{TDC} ;
 - Noise spectrum

• Time-pulse function – $\delta_{\text{Dirac}}(t_i) \rightarrow Some \ distribution(t,t_i,T_j)$

These conditions must be included into Monte-Carlo to have is as closer to the data as possible to mimic operation conditions as a function of (beam)time

Beam rate control with scintillators

Additional counter in front of TPC

Energy loss in scintillator behind TPC

Fraction of electrons, which are lost in TPC

Thickness of Sci in front of TPC, mm

Alignment of scintillators

- Lost fraction doesn't depend on small shifts (<0,5 mm) of scintillators along X and Y axes.
- Several positions were tested
 - Shift of one scintillator in X or X&Y direction
 - Shift of two scintillators in same (one) direction
 - Shift of two scintillator in opposite directions (one axis)
 - Shift in opposite directions for two axis
- No effect is found within uncertainties

TPC signal and noises

Simplifications (TPC-prototype example)

time, µs

Signal extraction should be the same for data and MC!

Energy resolution vs. Beam intensity

Central TPC anode

Beam noise is increasing (~as square root) with beam intensity

Beam noise (~linearly) increasing with the pressure of gas in TPC

Beam noise in Hydrogen is less than in 96% Helium + 4% Nitrogen gas mixture by factor ~1.5

Comparison of the experimental data with MC

See more details https://github.com/aleksha/G4-Models/tree/master/Data/Noise

Further studies of noise + simulation

Still to be implemented We can have noise as a function of time!

Generated noise

Noise in data (baseline corrected)

- Obtain distribution for real and imaginary part of frequency spectra using Fourier transformation;
- 2. Fit these distributions using two gaussian hypotheses;
- 3. Generate random spectrum out of these distributions;
- Use inverse Fourier transformation to obtain spectrum of generated events.

Event generators

There will be no loss in central (not sensitive) part of CSC

Event generators

- ESEPP <u>https://github.com/gramolin/esepp</u> to account radiative corrections
- "Handmade" △ production generation for inelastic (there are more realistic approximation in PRad paper)

Correlation between T_p and electron and proton angle is powerful tool to reject inelastic background

Tracking in CSC

Scattered electron reconstruction (by CSC)

10.03.2020

Beam

Simplifications (beam)

• Poisson time distribution for incoming beam electrons \rightarrow time interval between beam electrons distributed as $exp(-\Delta t/f_b)$.

•
$$\mu_{bx} = \mu_{by} = 0$$
 and $\sigma_{bx} = \sigma_{by} = \sigma_{b}$
• $\mu_{p\vartheta} = 0$

• Note, that background for the event can be done as during simulation as well as constructed afterwards from single electrons.

10.03.202

- Special low beam intensity run (18kHz)
- Accumulated signal from 36k events (~80 minutes).
- Events are taken if no electron in 70 µs time window (so-called protection after), but no protection before
- MC demonstrates linear behavior for the background

<u>Result:</u> accumulated signal could be used for drift time calibration in e⁻p experiment (no recombination!)

-301.8 5172

10000 time, 10°rs

For low frequencies Poisson distribution works, but it will be good to have some proofs for nominal $f_{\rm b}$

Conclusions

- A lot of aspects of the Monte-Carlo for the proposed experiment were investigated
- They were rather answering on questions, which however demonstrated that the proposed experiment is feasible
- It's time for the software project, which will join described ideas
- Propose to have special Monte-Carlo working group