Measurement of the proton radius at A1 and MAGIX

Sören Schlimme

- large proton radius fraction -

The proton radius puzzle

SELECTED

Jan Bernauer, Michael Distler, Jörg Friedrich, Thomas Walcher, Harald Merkel, ..., sören Schlimme, ...

Measurement of the proton radius at A1 and MAGIX

Sören Schlimme

Institute for Nuclear Physics Johannes Gutenberg University Mainz

First A2 - TPC collaboration meeting

Mar. 9-10, 2020, Mainz, Germany

- previous A1 experiments
- **current A1 experiments**
- future MAGIX experiments

centered around this fancy device

Sören Schlimme (JGU)

easurement of the proton radius at A1 and MAGIX

020-03-09 3/4

Elastic ep-scattering: e.m. form factors

Mainz Microtron (MAMI) - Electron Accelerator

The A1 setup

High resolution magnetic spectrometers

spectrometer A spectrometer B spectrometer C Kaos

Liquid hydrogen target

IVY

Sören Schlimme (JGU)

Cross Section Determination

Corrections

- dead time
- detector efficiency
- radiative corrections

beneficial approach: compare spectrum to simulation including rad. corr. \rightarrow XS relative to the one used in simulation

 $\Delta E'$: measured - expected(elastic)

electron energy

Sören Schlimme (JGU)

Proton form factors, radius

Sören Schlimme (JGU)

Proton Radius Result 2010

- Extension of the program: higher Q^2 data (MAMI-C)
 - J. Müller, PhD thesis in progress

Sören Schlimme (JGU)

Extension of the program

- Extension of the program: higher Q^2 data (MAMI-C)
 - J. Müller, PhD thesis in progress
- Claim of community: need smaller Q^2 data $\langle r_E^2 \rangle = -6\hbar^2 \frac{\mathrm{d}G_E}{\mathrm{d}Q^2}$ [Bernauer et al.: > 0.004 (GeV/c)².]

- how to do that at MAMI?

Sören Schlimme (JGU)

Measurement of the proton radius at A1 and MAGIX

 $Q^2 = 0$

Initial State Radiation

Sophisticated simulation needed (FSR, ...)

Exploit information in radiative tail

- ISR: photon radiation takes energy out of electron → access to lower Q² at given scattering angle
- Allows investigating $G_{\rm E}$ at Q^2 down to 10⁻⁴ GeV²

Initial State Radiation

NLO virtual and real corrections included via effective corrections to cross-section

The ISR experiment

Performed at MAMI in 2013

Sören Schlimme (JGU)

Results ISR 2013

Comparison data vs. simulation

- Simulation performed with Bernauer et al. parametrization of FFs
- A percent agreement
 ↔ radiative corrections well understood, even 200 MeV away from elastic peak!
- Existing apparatus limited reach to $E' \sim 130$ MeV
- Assuming flawless description of radiative corrections, FFs can be extracted

M. Mihovilovic et al., Phys. Lett. B 771 (2017) 194

Results ISR 2013: form factor, radius

M. Mihovilovic et al., Phys. Lett. B 771 (2017) 194

First measurement of $G_{\rm E}$ down to $Q^2=0.001~{
m GeV^2}$

Results ISR 2013: form factor, radius

M. Mihovilovic et al., Phys. Lett. B 771 (2017) 194

First measurement of $G_{\rm E}$ down to $Q^2 = 0.001~{
m GeV^2}$

 $r_{\rm E} = (0.836 \pm 0.017_{\rm stat.} \pm 0.057_{\rm syst.} \pm 0.003_{\rm mod.}) \text{ fm}$

Sören Schlimme (JGU)

Results ISR 2013: radius

Diplomatic. Some improvement: arXiv:1905.11182 [nucl-ex]

Sören Schlimme (JGU)

Honestly:

ISR - MVP

ISR - Mastermind

NOT EXACTLY THE DESIRED

Sören Schlimme (JGU)

Measurement of the proton radius at A1 and MAGIX

2020-03-09 18/46

IMPROVE?

Common challenges elastic ep + ISR

Desirable: thin, point-like target without walls

- Background from target foils
 - empty cell measurements
 - not the same Eloss, multi scatt
 - not for all settings ep experiment
 - background model
- background from (thin) ice layer
- spectra distorted by (thin) ice layer
- rescattering on thick frame
- (avoidable) target length issues

Common challenges elastic ep + ISR

Sören Schlimme (JGU)

Common challenges elastic ep + ISR

Background from target foils

- empty cell measurements
 - not the same Eloss, multi scatt
 - not for all settings ep experiment
 - background model
- background from (thin) ice layer
- spectra distorted by (thin) ice layer
- rescattering on thick frame
- (avoidable) target length issues

thin, point-like target without walls

Sören Schlimme (JGU)

Desirable:

Measurement of the proton radius at A1 and MAGIX

2020-03-09 21/46

Shopping

Sören Schlimme (JGU)

jet target installation at A1

Sören Schlimme (JGU)

37

First tests 2017/2018

Sören Schlimme (JGU)

1st commissioning beam time, Sept. 2017

Sören Schlimme (JGU)

1st commissioning beam time, Sept. 2017

Sören Schlimme (JGU)

beam time, April 2018

since then: improve, repair, replace, improve,

•••

Sören Schlimme (JGU)

Collimator

Sören Schlimme (JGU)

Actual data quality

still some background from catcher/nozzle at percent level

data with high gas flow: production data

data with low gas flow: background studies /subtraction

cosmics background: eventually significant for large angle settings

further reduce BG by veto detector inside scattering chamber, ...

Some upgrades (some complete)

→ TIME TO HARVEST

Sören Schlimme (JGU)

Measurement of the proton radius at A1 and MAGIX

2020-03-09 31/46

Actual Experiment

Remeasure 2010-data with jet target

- limited count rate! set priorities
 - specB: data
 - specA (30°): lumi monitor
 - not-so-dense as before

(2010)

al.

Bernauer et

Actual Experiment

Remeasure 2010-data with jet target

- limited count rate! set priorities
 - specB: data
 - specA (30°): lumi monitor
 - not-so-dense as before

PRAD result \rightarrow

- start with 315 MeV
- continue with 195 MeV (not 180 MeV)

• ..

(2010)

Bernauer et al.

Actual Experiment

Remeasure 2010-data with jet target

- limited count rate! set priorities
 - specB: data
 - specA (30°): lumi monitor
 - not-so-dense as before

data quality might improve, but still not lower in \mathbf{Q}^2

Sören Schlimme (JGU)

man on a mission,
with visions and dreams!

Sören Schlimme (JGU)

Sören Schlimme (JGU)

Sören Schlimme (JGU)

Measurement of the proton radius at A1 and MAGIX

2020-03-09 37/46

Sören Schlimme (JGU)

MESA + experiments

MAGIX - multi-purpose experiment

high-resolution magnetic spectrometers

- rotatable, 15°-160°
- QDD

Sören Schlimme (JGU)

MAGIX - multi-purpose experiment

high-resolution magnetic spectrometers

- rotatable, 15°-160°
- QDD
- detectors in focal plane
- design resolution
 - momentum: 10⁻⁴
 - angular: few mrad
 - vertex: few mm

Sören Schlimme (JGU)

Measurement of the proton radius at A1 and MAGIX

2020-03-09 43/46

MAGIX - multi-purpose experiment

high-resolution magnetic spectrometers

- rotatable, 15°-160°
- QDD
- detectors in focal plane
- design resolution
 - momentum: 10⁻⁴
 - angular: few mrad
 - vertex: few mm

physics program

- dark photon search
- q.e. and inelastic processes at very low mom. transfers
- test of effective field theories in light nuclei
- nuclear reactions of astrophysical relevance
- e.m. structure of atomic nuclei, including proton charge radius measurement

Sören Schlimme (JGU)

Measurement of the proton radius at A1 and MAGIX

2020-03-09 44/46

MAGIX: Proton e.m. form factor measurements

- 20 105 MeV beam energy
- jet target \times 2 spectrometers
- up to 1000 µA beam current
 - uncertainties wil not be statistically limited
- down to 10^{-5} GeV²
 - \rightarrow proton radius!

Sören Schlimme (JGU)

Summary ongoing/planned experiments

Extension of the pFF measurements to high Q^2

- data acquired, analysis ongoing
- main data set with specA
- MAMI-C energies
- \rightarrow improve knowledge of higher moments of
 - e./m. distribution of the proton \leftrightarrow fit models

Remeasurement of low Q^2 data with jet target

- data with specB
- luminosity monitoring with specA
- selected kinematics
 - 315 MeV, 195 MeV, ...
 - 15° ≈50°
- \rightarrow minimize systematic errors

Measurement of pFF data at MAGIX

- jet target \times 2 spectrometers
- 20 MeV 105 MeV
- 15° 160° (?)
- \rightarrow high-precision data at very low \mathbf{Q}^2

Thank you very much for your attention!

Sören Schlimme (JGU)

