QCD (Quantum Chromo Dynamics)

ALICE

- quantum field theory of strong interactions between quarks and gluons carrying color charges
 - 6 quarks (up, down, strange, charm, bottom, top): 3 color charges
 - 8 gluons: color and anti-color charge (!)
- not a simple theory (to calculate)
 - no analytic solution
- strong force, depending on momentum transfer Q
 - running coupling: $\alpha_s = \alpha_s(Q)$
 - compare to QED: $\alpha = 1/137$
 - Iow Q: confinement
 - high Q: asymptotic freedom
 - → 2004 Nobel prize (Wilczek, Gross, Politzer)

not everything is understood

- extremely complex vacuum (not "empty"!)
 - → phenomenological models

R. Averbeck, **E**

Confinement

● asymptotic freedom towards high momentum transfer (energy, temperature, density) → strongly interacting partons become free

 \rightarrow deconfined phase of matter

Cabibbo, Parisi, PLB 59 (1975) 67 Collins, Perry, PRL 34 (1975) 1353

• naive picture of different phases of strongly interacting matter

- increasing temperature
 → thermal motion
 → production of mesons
- increasing density
- → hadrons "overlap"
- → quarks and gluons become the relevant degrees of freedom

PHASE TRANSITION!

R. Averbeck, 🖬 🌆 🛽

Strongly interacting matter

Once upon a time

Darmstadt, 3.8.2018

EMMİ

8

Little Bang in the laboratory

- how to reach energy densities sufficiently large to produce a deconfined QGP in the laboratory (T ~ 200.000 x T_{Sun})?
- unique experimental approach: collisions of heavy nuclei at ultra-relativistic energies

Pb-Pb collision in UrQMD

t=-19.00 fm/c

H. Weber / UrQMD Frankfurt/M

Collision stages

- 1. initial collisions, pre-equilibrium (t \leq t_{coll} = 2R/ γ _{cm}c)
- 2. thermalization: equilibrium is established (t \leq 1 fm/c = 3 x 10⁻²³ s)
- 3. expansion (~ 0.6 c) and cooling (t ~ 10-15 fm/c) ... deconfined stage?
- 4. hadronization (quarks and gluons form hadrons)
- 5. chemical freeze-out: inelastic collisions cease
 - \rightarrow particle identities, i.e. yields, are frozen
- 6. kinetic freeze-out: elastic collisions cease
 - → spectra are frozen (3-5 fm/c later)

Most measurements reflect stages 5 and 6. We want to investigate properties of 2-4!

The CERN accelerator complex

EMMİ

The CERN accelerator complex

Tunnel: ~100 m below ground

The LHC at CERN

- proton (or Pb ion) beams circle the ring about 11.000 times per second deflected by superconducting magnets at T = 1.9 K (superfluid He)
- produced the Higgs particle (H $\rightarrow \gamma\gamma$: ATLAS, CMS, 2012)
 - Nobel Prize 2013: P. Higgs, F. Englert

EMMI /Darmstadt, 3.8.2018

The LHC in numbers

ALICE

- ~27 km long, 8 arcs (~3 km), each 46 x (1 quadrupole + 3 dipole magnets)
- 8 straight sections: RF cavities (IP4) + beam cleaning (IP3,7), dump (IP6)
- 1232 superconducting dipoles (+ 3700 correctors);
 392 quadrupoles (+ 2500 correctors);
 8 RF cavities/beam (400 MHz);
 108 collimators and absorbers
- cooled with 120 tons of He at 1.9 K; B = 8.33 T (1.5 kA/mm²)
- 2808 bunches per ring, each with 1.15 x 10¹¹ protons (8 min filling)
 592 bunches per ring, each with 7 x 10⁷ Pb ions
- transverse beam size: $\sigma_{x,y}$ = 16 µm; bunch length: σ_z = 7.6 cm
- beam kinetic energy: 362 MJ per beam (1 MJ melts 2 kg copper)
 → equivalent to the ICE train (200 tons) at 200 km/h
- total electromagnetic energy stored (dipoles only): 8.5 GJ!

Conditions achieved

(extracted from data and models, vs. collision energy)

temperature

 T = 100-500 MeV (1 MeV ~ 10¹⁰ K, a million times temperature at the center of the Sun)

pressure

- P = 100-300 MeV/fm³ (1 MeV/fm³ ~ 10²⁸ atmospheres, center of Earth: 3.6 million atm)
- density
 - $\rho = 1-10 \rho_0 (\rho_0 \text{ density of a Au } \frac{\text{nucleus}}{\text{nucleus}} = 2.7 \text{ x } 10^{14} \text{ g/cm}^3$, density of gold = 19 g/cm³)
- volume
 - about 2000 fm³ (1 fm = 10⁻¹⁵ m)
- life time
 - about 10 fm/c (or about 3 x 10⁻²³ s)

a truly extreme femto world

A detector at the LHC - ALICE

What do we measure?

R. Averbeck, **E**

- symmetric collisions of heavy nuclei (Pb-Pb, Au-Au) with proton-nucleus (p-Pb, d-Au) and proton-proton collisions as reference
- measurement of
 - charged particles, but neutral ones too (via their decays), photons
 - amount of particles (count tracks assembled from detector points)
 - momentum (via track curvature in magnetic field) or energy (via calorimetry) or velocity (via time-of-flight measurement, $\sigma \sim 80$ ps)
 - identify particles via their energy deposit in detector or via ToF or via invariant mass measurement
 - correlations between particles (in each collision)
 - focus on measurements in the transverse direction (y, η ~ 0) to separate from beam movement
 - single particle detection efficiency: ~70-80 %

Pb-Pb collision seen with ALICE

• "camera": Time Projection Chamber

EMMİ

- 5 m length, 5 m diameter, 500M "pixels"
 - \rightarrow few 100 pictures per second (preparing for 50000)

central Pb-Pb collision with total collision energy > 1 PeV: ~3200 primary, charged particle tracks in $|\eta| < 0.9$

ALICE

Particle identification

- p/Z from track curvature in magnetic field of B = 0.5 T
- ionization energy loss dE/dx from truncated mean of 159 samples along the track with resolution ~5.8 %
- m²/Z² via time-of-flight with resolution ~80 ps

EMMİ

Energy density in AA collisions

R. Averbeck, **G**

- Bjorken model (1983): self-similar (Hubble-like) homogeneous (hydrodynamic) expansion of the fireball in longitudinal (beam) direction
- energy density: $\varepsilon = 1/A_T dE_T/dy 1/(c\tau)$
 - $A_T = \pi R^2$: transverse area (Pb-Pb: $A_T = 154 \text{ fm}^2$)
 - $\tau \sim 1$ fm/c: formation/equilibration time \rightarrow not measureable!

EMMI / Darmstadt, 3.8.2018

Chemical decoupling: hadron yields

- hadron yields in central collisions
- Iots of particles, mostly newly produced (m = E/c²)
 - a variety of species
 - π[±], m = 140 MeV
 - K[±], m = 494 MeV
 - p, m = 938 MeV
 - Λ, m = 1116 MeV
 - Ξ, Ω, ...
 - mass hierarchy in the production (low energy: u,d quarks remnants from the incoming nuclei)

R. Averbeck, **G**

Thermal fits of hadron yields

10³

10

10

10⁻¹

 10^{-2}

 10^{-3}

Data (ALICE)

total (after decays)

rmal model, T=156 MeV (V=5330 fm³)

dN/dy/(2J+:

3

R. Averbeck, **E**

hadron gas: grand-canonical ensemble

$$n_i = N_i/V = -\frac{T}{V}\frac{\partial \ln Z_i}{\partial \mu} = \frac{g_i}{2\pi^2} \int_0^\infty \frac{p^2 \mathrm{d}p}{\exp[(E_i - \mu_i)/T] \pm 1}$$

quantum number conservation

$$\mu_i = \mu_B B_i + \mu_{I_3} I_{3i} + \mu_S S_i + \mu_C C_i$$

hadron properties from PDG (up to m = 3 GeV, 500 species)

• minimize
$$\chi^2 = \sum_i \frac{(N_i^{exp} - N_i^{therm})}{\sigma_i^2}$$

 \rightarrow (T, μ_B , V)
 \rightarrow all hadron vields

 10^{-4} hadron abundances in 0.5 1.5 2.5 agreement with a thermally equilibrated system Mass (GeV)

Pb-Pb √s_{NN}=2.76 TeV

0-10% centrality (N_{part}=356)

From quarks and gluons to hadrons

matter and antimatter produced in equal amounts in high-energy Pb-Pb collisions at the LHC

EMMI

Chemical freeze-out curve

Darmstadt, 3.8.2018

EMMİ

Hard probes for hot matter • going back to 1909

 \bullet Geiger, Marsden, and Rutherford discover the atomic nucleus via scattering of α particles on a gold foil

• tomography – studying matter with probes

- calibrated probe
- calibrated interaction
- → scattering experiment to study properties of matter

at the LHC

- external probe not available
- probe has to be "auto generated" in the earliest phase of the collision
- hard scattering processes of partons!

Jet quenching: the idea

"hard" probes: E >> T

- jets (sprays of hadrons from high-momentum quarks or gluons)
- high-p_T hadrons ("leading" hadrons from jets)
- heavy quarks (charm or bottom)

hard probes for hot matter

- produced very early in the collision (t \sim 1/E)
- q, q
 q, g travel through QGP and loose energy ("jet quenching")
- hadronize (neutralize color picking up partners from the vacuum)
- hadrons travel towards detector
- jet quenching

Darmstadt, 3.8.2018

emmi

→ deficit of high-momentum hadrons in Pb-Pb collisions compared to pp (properly scaled for geometry)

• quantified by the nuclear modification factor dN + t/dnmdu

$$R_{AA} = \frac{\mathrm{d}N_{AA}/\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}{N_{coll}\cdot\mathrm{d}N_{pp}/\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$$

Jet quenching at the LHC

measured via "leading hadrons" (h[±])

- stronger than measured at RHIC (where it was discovered)
- reaching a suppression factor of ~7 at p_T ~ 7 GeV/c
- remains substantial even at 50-100 GeV/c
- observed also for reconstructed jets (ALICE; ATLAS, CMS)

ALICE: PLB 720(2013)52 CMS: EPJC 72(2012)1945

R. Averbeck, **E**

Jet quenching at the LHC

measured via "leading hadrons" (h[±])

ALICE: EPJC 74(2014)3054 and references therein

Jet quenching at the LHC

can be explained theoretically only when considering a high-density partonic medium at initial T ~ 500 MeV

- energy loss mechanisms: collisional, gluon radiation (different T and L dependence)
- models: MC shower, analytic
- notable recent advances in conceptual understanding (Y. Mehtar-Tani, arXiv:1602.01047)
- determination of transport coefficient (q̂ = d<k_T²>/dx) in sight
 - (JET Collab., PRC 90(2014)014909)

 note: bulk hadron production (~ N_{part}) and radial flow (~ 65% c) are relevant at low p_T (below 4-5 GeV/c)

Charmonium and deconfined matter

- idea considered originally as "smoking gun" for QGP formation: Matsui & Satz, PLB 178(1986)178
 - "If high energy heavy-ion collisions lead to the formation of a hot quarkgluon plasma, then color screening prevents cc binding in the deconfined interior of the interaction region."
- "Debye screening": no J/ψ formation if r_{J/ψ} > λ_D
- refinement: sequential suppression (Digal et al., PRD 64(2001)75)
- Debye length in QGP:
 λ_D ~ 1 / (g(T) T)
- r_{qq} = f(T) (lattice QCD result)
- \rightarrow q \bar{q} "thermometer" of QGP

EMMI /Darmstadt, 3.8.2018

R. Averbeck, 🖬 🎫 🗽

Charmonium data: RHIC vs. LHC

 $dN_{ch}/d\eta$ ~ ϵ (>16 GeV/fm³ for $dN_{ch}/d\eta$ ~ 1500)

ALICE, PLB 734(2914)314

Charmonium data: RHIC vs. LHC

 $dN_{ch}/d\eta \sim \epsilon$ (>16 GeV/fm³ for $dN_{ch}/d\eta \sim 1500$)

ALICE, PLB 734(2914)314 A. Andronic et al., PLB 652(2007)259

EMMI / Darmstadt, 3.8.2018

R. Averbeck, 🖬 🎫 🔟