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Best Linear Unbiased Estimate (BLUE)

Have seen how to combine uncorrelated measurements.

Now consider n data points yi ,~y = (y1, . . . , yn) with covariance matrix V .

Calculate weighted average λ by minimising

χ2(λ) = (~y −~λ)TV−1(~y −~λ) ~λ = (λ, . . . ,λ)

Result:

λ̂ = ∑
i

wiyi , with wi =
∑k(V

−1)ik
∑k,l(V

−1)kl

Variance:

σ2
λ̂
= ~wTV~w = ∑

i,j

wiVijwj

This is the best linear unbiased estimator, i.e. the linar unbiased estimator with

the lowest variance
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BLUE
Special case: two correlated measurements

Consider two measurements y1, y2, with covariance matrix (ρ is correlation

coefficient)

V =

(
σ21 ρσ1σ2

ρσ1σ2 σ22

)

Applying formulas from above:

V−1 =
1

1− ρ2

 1
σ2
1

−ρ
σ1σ2

−ρ
σ1σ2

1
σ2
2

 ; λ̂ = wy1 + (1−w)y2

w =
σ22 − ρσ1σ2

σ2
1
+ σ2

2
− 2ρσ1σ2

; V [λ̂] = σ2 =
(1− ρ2)σ21σ22

σ2
1
+ σ2

2
− 2ρσ1σ2
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Weighted average of correlated measurements:
interesting example

adapted from Cowan’s book and Scott Oser’s lecture:

Measure length of an object with two rulers. Both are calibrated to be accurate

at temperature T = T0, but otherwise have a temperature dependency: true

length y is related to measured length L by

yi = Li + ci(T − T0)

Assume that we know ci and the (Gaussian) uncertainties. We measure L1, L2,

and T , and want to combine the measurements to get the best estimate of the

true length.
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Weighted average of correlated measurements:
interesting example

Start by forming covariance matrix of the two measurements:

yi = Li + ci(T − T0); σ2i = σ2L + c2i σ2T

cov[y1, y2] = c1c2σ2T

Use the following parameter values, just for concreteness:

c1 = 0.1 L1 = 2.0± 0.1 y1 = 1.80± 0.22 T0 = 25

c2 = 0.2 L2 = 2.3± 0.1 y2 = 1.90± 0.41 T = 23± 2

With the formulas above, we obtain the following weighted average

y = 1.75± 0.19

Why doesn’t y lie between y1 and y2? Weird!
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Weighted average of correlated measurements:
interesting example

y1 and y2 were calculated

assuming T = 23

Fit adjusts temperature and

finds best agreement at T̂ = 22

Temperature is a nuisance

parameter in this case

Here, data themselves provide

information about nuisance

parameter
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Confidence intervals
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In 2006:Mtop = 174.3± 5.1GeV/c2

What does this mean?

68% of top quarks have masses between 169.2 and 179.4GeV/c2

WRONG: all top quarks have same mass!

The probability of Mtop being in the range 169.2− 179.4GeV/c2 is 68%
WRONG: Mtop is what it is, it is either in or outside this range. P is 0 or 1.

Mtop has been measured to be 174.3GeV/c2 using a technique which has
a 68% probability of being within 5.1GeV/c2 of the true result
RIGHT
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68% of top quarks have masses between 169.2 and 179.4GeV/c2

WRONG: all top quarks have same mass!

The probability of Mtop being in the range 169.2− 179.4GeV/c2 is 68%
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Mtop has been measured to be 174.3GeV/c2 using a technique which has

a 68% probability of being within 5.1GeV/c2 of the true result
RIGHT

if we repeated the measurement many times, we would obtain many

different intervals; they would bracket the true Mtop in 68% of all cases
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Point estimates, limits

Often reported: point estimate and its standard deviation, θ̂ ± σ̂θ̂ .

In some situations, an interval is reported instead, e.g. when

p.d.f. of the estimator is non-Gaussian, or

there are physical boundaries on the possible values of the parameter

Goals:

communicate as objectively as possible the result of the experiment

provide an interval that is constructed to cover the true value of the

parameter with a specified probability

provide information needed to draw conclusions about the parameter or to

make a particular decision

draw conclusions about parameter that incorporate stated prior beliefs

With sufficiently large data sample, point estimate and standard deviation

essentially satisfy all these goals.
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Choices, choices!

We can choose:

The confidence level

two-sided confidence intervals: typically 68%, corresponding to ±1σ

upper (or lower) limits: frequently 90%, but 95% not uncommon …

Whether to quote an upper limit or a two-sided confidence interval

What sort of two-sided limit

central (i.e. symmetric), shortest, …

Important: document what you are doing!
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Constrained parameters
Measure a mass

MX = −2± 5GeV

or even

MX = −5± 2GeV

‘MX lies between −7 and −3’ with 68%
confidence

???

Counting experiment

Expect 2.8 background events

See 0 events; so, 90% CL upper limit is

2.3 events

so, signal < −0.5 events

???
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What’s happened?

Two views:

Nothing has gone wrong

(Up to) 10% of our 90% CL

statements can be wrong; this is

just one of them

Publish this, to avoid bias!

Everything wrong!

There are physical constraints

(masses are non-negative, so are

cross sections!)

No way to input this into the

statistical apparatus

We will not publish results that are

manifestly wrong

This is broken and needs fixing
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What should be done with ‘unphysical’ results?

Best, but mostly not possible: publish full likelihood (or log-likelihood) function.

This allows optimal combination of results, but is rarely done.

Preferred solution: publish both solutions,

i.e. the ‘raw’, maybe nonsensical two-sided confidence interval,

and one-sided C.I. taking extra constraints into account

May have to fight against (internal and external) referees who insist that

publishing a two-sided confidence interval is equivalent to claiming

“observation”
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Estimation of confidence intervals
Typically, use fit to determine event yields or parameters of a distribution

Least square fit (for binned datasets) or maximum likelihood fits (can also deal

with unbinned data)

Error definition, for one degree of freedom:

LSQ : 1σ confidence interval from S = Smin + 1

ML : 1σ confidence interval from logL = logLmax − 1
2

nσ conf. intervals from 2∆ logL = n2

See today’s practical part what happens for joint confidence region for ν

parameters
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Construction of frequentist confidence intervals
Neyman construction of ‘confidence belts’:

for a given value of parameter θ, find interval of possible measured values x

such that [x1, x2] is a CL confidence interval:

Possible experimental values x
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then, for given experimental outcome x0, read off vertically range of parameter θ.

Has all nice properties one would like to have: in particular coverage

Can be pre-computed, e.g. for counting statistics (Poisson)
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Bayesian credible intervals
Bayesian approach: report full posterior p.d.f.

If a range is desired: integrate posterior p.d.f. p(θ|x)

1− α =
∫ θup

θlo
p(θ|x)dθ

e.g. 1− α = 0.9: “90% credible interval”

Several choices possible to construct [θlo, θup]:

[−∞; θlo] and [θup;∞] both correspond to probability α/2

Symmetric interval around maximum value of p, corresponding to

probability 1− α

p(θ|x) higher than any θ not belonging to the set

…
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Hypothesis tests
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Hypotheses and tests
Hypothesis test

I Goal: draw conclusions from the data

I Statement about validity of a model

I Decide which of two competing models is more consistent with data

Simple hypothesis: no free parameters

I Examples: particle is a π; data follow Poissonian with mean 5

Composite hypothesis: contains free parameters

Null hypothesis H0 and alternative hypothesis H1

I H0 often the background-only hypothesis

(e.g. Standard Model only; no additional resonance; …)

I H1 often signal or signal+background hypothesis

Question: can H0 be rejected by data?

Test statistic t: (scalar) variable that is a function of the data alone, that can

be used to test hypothesis
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Critical region
Reject null hypothesis if value of t lies in critical region: t > tcut

Probability for H0 to be rejected

while H0 is true:

∫ ∞

tcut

f (t|H0)dt = α
α: “size” or significance

level of test

Probability for H1 to be rejected

even though it is true:

∫ tcut

−∞
f (t|H1)dt = β

1− β: power of the test
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Type I and Type II errors

Statistics jargon, getting more and more common also in HEP

Type I error: Probability of rejecting null hypothesis H0 when it is actually true

also known as false discovery rate

Type II error: Probability to fail to reject null hypothesis H0 while it is actually false

also known as false exclusion rate
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p-value
p-value: probability to observe data set that is as consistent or worse with null

hypothesis as the actual observation

test statistic: q0

pdf for q0 under H0: f (q0|0)
critical region: large values of q0

q0,obs: observed value in data

p0 =
∫ ∞

q0,obs

f (q0|0)dq0

pdf for q0 under H0 frequently needs to be estimated with simulation

p-value is a random variable (contrast: significance level α fixed before

measurement).

if p0 < α: reject H0

1− p0: confidence level of test
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p-value and significance

(a) 
_1_ e-x2/2

/ \'2n

p-value

I

1--- z ---1 X 

if p0 < α, then reject null hypothesis

Frequent convention in HEP:

for discovery, require p < 2.87× 10−7

for exclusion, require p < 0.05

translate p-value to significance Z via

Standard Normal pdf

p0 =
∫ ∞

Z

1√
2π

e−x2/2dx = 1− Φ(Z)

Z = Φ−1(1− p0)

Significance of 5 (1.64) s.d.

corresponds to p = 2.87× 10−7(0.05)
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how can we objectively tell which model fits better?



Least squares: Goodness-of-fit

Minimum value of S in the least squares method is a measure of agreement

between model and data:

Smin =
n

∑
i=1

(
yi − f (xi ;~̂θ)

σi

)2

Large value of Smin: can reject model.

If model is correct, then Smin for repeated experiments follows a χ2 distribution

with ndf degrees of freedom:

f (t; ndf) =
tndf/2−1

2ndf/2Γ( ndf
2
)
e−t/2, t = χ2

min

with ndf = n−m = number of data points− number of fit parameters
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Least squares: Goodness-of-fit

Expectation value of χ2 distribution is ndf

á χ2 ≈ ndf indicates good fit

Consistency of a model with data is quantified with the p-value:

p =

+∞∫
Smin

f (t; ndf)dt

p-value: probability to get a χ2
min

at least as high as the observed one, if the

model is correct.

p-value is not the probability that the model is correct!
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p-value for the straight line fit example
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p-value for the straight line fit example
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Smin = 18.3964, ndf = 4

p-value = 0.00103

θ̂0 = 2.856± 0.181

Stat. uncertainty on fit parameter

does not tell us whether model is

correct
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Goodness of fit for unbinned ML fits
In the case of unbinned ML fit, can bin data and model prediction into

histogram and then perform χ2 test

Consider the likelihood ratio

λ =
L(~n|~ν)
L(~n|~n) , ~ν = ~ν(~θ)

For multinomially (“M”, ntot fixed) and Poisson distributed data (“P”), one obtains

for k bins

λM =
k

∏
i

(
νi
ni

)ni

, λP = entot−νtot
k

∏
i

(
νi
ni

)ni

Now consider test statistic

t ≡ −2 log λ
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Goodness of fit for unbinned ML fits
For multinomially distributed data, in the large sample limit

tM = −2 log λM = 2
k

∑
i=1

ni log
ni

ν̂i

follows χ2 distribution for k −m− 1 degrees of freedom.

For Poisson distributed data,

tP = −2 log λP = 2
k

∑
i=1

(
ni log

ni

ν̂i
+ ν̂i − ni

)

follows χ2 distribution for k −m degrees of freedom.

Note: always remember to quote χ2 and ndf separately, instead of just the

‘reduced χ2/ndf — there is a difference!

prob(15,10) = 0.132

prob(1500,1000) = 1.05× 10−22
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Profile likelihood ratio:
hypothesis tests with nuisance parameters

Base significance test on the profile likelihood

λ(µ) =
L(µ, ˆ̂θ)
L(µ̂, θ̂)

=
maximised L for specified µ

globally maximised L

Likelihood ratio of point hypotheses gives optimum test

(Neyman-Pearson lemma).

Composite hypothesis: parameter µ is only fixed under H0, but not under H1.

Wilks’ theorem:

q0 = −2 log λ

asymptotically approaches chi-square distribution for k degrees of freedom,

where k is the difference in dimensionality of H1 and H0
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Profile likelihood ratio
Example: B mass fit from last time; 40 signal events, 1000 background events
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d) scan of L(nsig, θ̂) with nuisance

parameters fixed to values from

global minimum

profile likelihood: L(nsig; ˆ̂θ)
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Profile likelihood ratio
Example: B mass fit from last time; 40 signal events, 1000 background events
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2∆ logL = 17.94

And therefore p-value for H0:

1.13927× 10−5, or significance for

nsig 6= 0

Z =
√
2∆ logL = 4.2σ
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Profile likelihood ratio
Example: B mass fit from last time; 40 signal events, 1000 background events
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nuisance parameters (that cannot

really be determined when

nsig = 0).

p-value = 0.0697557

Z = 1.48 σ
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Look-elsewhere effect

A Swedish study in 1992 tried to determine whether or not power lines caused

some kind of poor health effects. The researchers surveyed everyone living

within 300 meters of high-voltage power lines over a 25-year period and looked

for statistically significant increases in rates of over 800 ailments. The study

found that the incidence of childhood leukemia was four times higher among

those that lived closest to the power lines, and it spurred calls to action by the

Swedish government. The problem with the conclusion, however, was that they

failed to compensate for the look-elsewhere effect; in any collection of 800

random samples, it is likely that at least one will be at least 3 standard

deviations above the expected value, by chance alone. Subsequent studies

failed to show any links between power lines and childhood leukemia, neither in

causation nor even in correlation.

https://en.wikipedia.org/wiki/Look-elsewhere_effect
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Look-elsewhere effect

In general, a p-value of 1/n is likely to occur after n tests.

Solution: apply ‘trials penalty’, or ‘trials factor’, i.e. make threshold more

stringent for large n.

Not entirely trivial to choose trials factor: need to count effective number of

‘independent’ regions.

Suppose you look at a range of invariant masses large compared to the mass

resolution, then N ∼ ∆M/σM.

See e.g. Gross & Vitells, arXiv:1005.1891 [physics.data-an] for a recipe
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Look-elsewhere effect

Can make substantial change to claimed significance:

for example ATLAS observation of

an enhancement around 750 GeV

in γγ invariant mass:

Local significance 3.9σ,

corresponding to a p-value of

p = 9.6× 10−5,

i.e. roughly 1:10000

Global significance only 2.1σ,

corresponding to a p-value of

p = 0.0357,

i.e. roughly 1:28
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(Final) digression: p-value debate

In many fields (esp. social sciences, psychology, etc.), significant means

p < 0.05

Relatively weak statistical standard, but often not realised as such!

We’ve seen that getting p < 0.05 isn’t that rare, especially if you run many

experiments!

May be a contributing factor to the ‘reproducibility crisis’

and may be exacerbated by p-value hacking
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5σ for discovery in particle physics?
5σ corresponds to p-value of 2.87× 10−7 (one-sided test)

History: many cases where 3σ and 4σ effects have disappeared with more

data

Look-elsewhere effect

Systematics: often difficult to quantify / estimate

Subconscious Bayes factor:

I physicists tend to (subconsciously) assess Bayesian probabilities p(H1|data)
and p(H0|data)

I If H1 involves something very unexpected (e.g. superluminal neutrinos), then

prior probability for H0 is much larger than for H1

I Extraordinary claims require extraordinary evidence

May be unreasonable to have single criterion for all experiments

Louis Lyons, Statistical issues in searches for new physics, arXiv:1409.1903
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p-value hacking
http://xkcd.com/822
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