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The scientific method: how we create ‘knowledge’
Theory / model

usually mathematical

self-consistent

simple explanations, few (arbitrary)

parameters

testable predictions / hypotheses

Experiment

modify or even reject theory in

case of disagrement with data

if theory requires too many

adjustments it becomes

unattractive

generate surprises

Advance of scientific knowledge is evolutionary process

with occasional revolutions

Statistical methods are important part of this process
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Statistics in science
Statistics is needed to:

characterise and summarise experimental results (impractical to always

deal with raw data)

quantify uncertainty of a measurement

assess whether two measurements of the same quantity are compatible,

combine measurements

estimate parameters of an underlying model or theory

test hypotheses:

determine whether a model is compatible with data

…
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Aims of this mini-series
Statistical inference: from data to knowledge

I Should we believe a physics claim?

I Develop intuition

I Know (some) pitfalls: avoid making mistakes others have already made

Understand statistical concepts

I Ability to understand physics papers

I Know some methods / standard statistical toolbox

Use tools

I Hands-on part with Python / Jupyter

I Application to your own work
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Practical information
Three sessions:

1. Basics, introduction, statistical distributions

2. Parameter estimation

3. Confidence intervals, hypothesis testing

About 60 minutes of lecture, then ≥ 30 minutes hands-on tutorial

I hope this will be useful for you,

but keep in mind that there is much more

to statistics than can be covered

in three brief hours.
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Two quick questions
https://pingo.coactum.de/529916

What is your (main) area of research / interest?

Which programming language(s) do you speak?
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Useful reading material
Books:

G. Cowan, Statistical Data Analysis

R. Barlow, Statistics: A guide to the use of statistical methods in the

physical sciences

L. Lyons, Statistics for Nuclear and Particle Physicists

A. J. Bevan, Statistical data analysis for the physical sciences

G. Bohm, G. Zech, Introduction to Statistics and Data Analysis for

Physicists (available online)

Lectures on the web:

G. Cowan, Royal Holloway University London: Statistical Data Analysis

K. Reygers, U Heidelberg, Stat. Methods in Particle Physics
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http://www-library.desy.de/preparch/books/vstatmp_engl.pdf
http://www.pp.rhul.ac.uk/~cowan/stat_course.html
https://www.physi.uni-heidelberg.de/~reygers/lectures/2017/smipp/


Dealing with uncertainty

Underlying theory is probabilistic (quantum mechanics / QFT)

source of true randomness

Limited knowledge about measurement process

even without QM

random measurement errors

Things we could know in principle, but don’t

e.g. from limitations of cost, time, …

Quantify uncertainty using probability
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Mathematical definition of probability
Kolmogorov axioms:

Consider a set S (the sample space) with subsets A, B, …(events).

Define a function P : P(S) 7→ [0,1] with

1. P(A) ≥ 0 for all A ∈ S

2. P(S) = 1

3. P(A∪ B) = P(A) + P(B) if A∩ B = ∅,

i.e. A and B are exclusive

From these we can derive further properties:

P(Ā) = 1− P(A)

P(A∪ Ā) = 1

P(∅) = 0

If A ∈ B, then P(A) ≤ P(B)

P(A∪ B) = P(A) + P(B)− P(A∩ B)

for the mathematically inclined: proper treatment will use measure theory
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Interpretations
Classical definition

I Assign equal probabilities based on symmetry of problem,

e.g. rolling ideal dice: P(6) = 1/6
I difficult to generalise, sounds somewhat circular

Frequentist: relative frequency

I A,B, . . . outcomes of a repeatable experiment

P(A) = lim
n→∞

times outcome is A

n

Bayesian: subjective probability

I A,B, . . . are hypotheses (statements that are either true or false)

P(A) = degree of belief that A is true

…all three definitions consistent with Kolmogorov’s axioms
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Conditional probability, independent events
Conditional probability for two events A and B:

P(A|B) = P(A∩ B)

P(B)

Example: rolling dice

P(n < 3|n even) = P((n < 3) ∩ (n even))

P(n even)
=

1/6
1/2

= 1/3

Events A and B independent ⇐⇒ P(A∩ B) = P(A) · P(B)
A is independent of B if P(A|B) = P(A)
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Bayes’ theorem
Definition of conditional probability:

P(A|B) = P(A∩ B)

P(B)
and P(B|A) = P(B∩ A)

P(A)

But obviously P(A∩ B) = P(B∩ A), so:

P(A|B) = P(B|A)P(A)
P(B)

Allows to ‘invert’ statements about probability:

of great interest to us. Want to infer P(theory|data) from P(data|theory)

Often these two are confused, knowingly or unknowingly

(advertising, political campaigns, …)
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Example for Bayes’ theorem: Rare disease
Base probability (for anyone) to have a disease D:

P(D) = 0.001

P(no D) = 0.999
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Example for Bayes’ theorem: Rare disease
Base probability (for anyone) to have a disease D:

P(D) = 0.001

P(no D) = 0.999

Consider a test for D: result is positive or negative (+ or –):

P(+|D) = 0.98

P(−|D) = 0.02

P(+|no D) = 0.03

P(−|no D) = 0.97
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Example for Bayes’ theorem: Rare disease
Base probability (for anyone) to have a disease D:

P(D) = 0.001

P(no D) = 0.999

Consider a test for D: result is positive or negative (+ or –):

P(+|D) = 0.98

P(−|D) = 0.02

P(+|no D) = 0.03

P(−|no D) = 0.97

Suppose your result is +; should you be worried?
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Example for Bayes’ theorem: Rare disease
Base probability (for anyone) to have a disease D:

P(D) = 0.001

P(no D) = 0.999

Consider a test for D: result is positive or negative (+ or –):

P(+|D) = 0.98

P(−|D) = 0.02

P(+|no D) = 0.03

P(−|no D) = 0.97

Suppose your result is +; should you be worried?

P(D|+) =
P(+|D)P(D)

P(+|D)P(D) + P(+|no D)P(no D)

=
0.98× 0.001

0.98× 0.001+ 0.03× 0.999
= 0.032

Probability that you have disease is 3.2%, i.e. you’re probably ok
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Bayes’ theorem: degree of belief in a theory
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Criticisms — Frequentists vs. Bayesians
Criticisms of the frequentist interpretation

I n → ∞ can never be achieved in practice. When is n large enough?
I Want to talk about probabilities of events that are not repeatable

I P(rain tomorrow) — but there’s only one tomorrow

I P(Universe started with a big bang) — only one universe available

I P is not an intrinsic property of A, but depends on how the ensemble of

possible outcomes was constructed

I P(person I talk to is a physicist) strongly depends on whether I am at a conference

or at the beach

Criticisms of the subjective interpretation

I ‘Subjective’ estimate has no place in science

I How to quantify the prior state of our knowledge?
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assumptions that no one believes, while Frequentists use impeccable

logic to deal with an issue that is of no interest to anyone’ — Louis

Lyons
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Describing data
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Random variables and probability density functions
Random variable:

Variable whose possible values are numerical outcomes of a random

phenomenon

Probability density function (pdf) of a continuous variable:

P(X found in [x, x + dx]) = f (x)dx

Normalisation:

+∞∫
−∞

f (x)dx = 1 x must be somewhere
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Histograms
Histogram

representation of the frequencies

of numerical outcome of a random

phenomenon

pdf = histogram for

infinite data sample

zero bin width

normalised to unit area

P(x) = lim
∆x→0

N(x)

N∆x
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Median, mean, and mode
Arithmetic mean of a data sample

(‘sample mean’):

x̄ =
1

N

N

∑
i=1

xi

Mean of a pdf:

µ ≡ 〈x〉 ≡
∫

x f (x)dx

≡ expectation value E [x]

Median:

point with 50% probability above and

50% prob. below

Mode:

most likely value

not necessarily the same, for skewed

distributions
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Variance, standard deviation
Variance of a distribution:

V(x) =
∫
dxP(x)(x − µ)2 = E [(x − µ)2]

Variance of a data sample

V(x) =
1

N
∑
i

(xi − µ)2 = x2 − µ2

Requires knowledge of true mean µ. Replacing µ by sample mean x̄ results in

underestimated variance!

Instead, use this:

V̂(x) =
1

N− 1
∑
i

(xi − x)2

Standard deviation:

σ =
√
V(x)
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Multivariate distributions
Outcome of an experiment

characterised by tuple (x1, . . . , xn)

P(A∩ B) = f (x, y)dx dy

with f (x, y) the ‘joint pdf’

Normalisation∫
· · ·

∫
f (x1, . . . , xn)dx1 · · · dxn = 1

Sometimes, only the pdf of one

component is wanted:

f1(x1) =
∫

· · ·
∫

f (x1, . . . , xn)dx2 · · · dxn

≈ projection of joint pdf onto individual

axis
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Covariance and correlation
Covariance:

cov[x, y] = E [(x − µx)(y − µy)]

Correlation coefficient:

ρxy =
cov[x, y]

σx σy

If x, y independent:

E [(x − µx)(y − µy)] =
∫
(x − µx)fx(x)dx

∫
(y − µy)fy(y)dy = 0

Note: converse not necessarily true
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Covariance and correlation
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Linear combinations of random variables
Consider two random variables x and y with known covariance cov[x, y]

〈x + y〉 = 〈x〉+ 〈y〉

〈ax〉 = a 〈x〉

V [ax] = a2V [x]

V [x + y] = V [x] + V [y] + 2 cov[x, y]

For uncorrelated variables, simply add variances.

How about combination of N independent measurements (estimates) of a

quantity, xi ± σ, all drawn from the same underlying distribution?

x̄ =
1

N
∑ xi best estimate

V [Nx̄] = N2σ

σx̄ =
1√
N

σ
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Combination of measurements: weighted mean
Suppose we have N independent measurements of the same quantity, but

each with a different uncertainty: xi ± δi
Weighted sum:

x = w1x1 +w2x2

δ2 = w2
1δ21 +w2

2δ22

Determine weights w1,w2 under constraint w1 +w2 = 1 such that δ2 is

minimised:

wi =
1/δ2

i

1/δ2
1
+ 1/δ2

2

If original raw data of the two measurements are available, can improve this

estimate by combining raw data

alternatively, use log-likelihood curves to combine measurements
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Correlation 6= causation

F. Messerli, N Engl J Med 2012; 367:1562

Correlation coefficient:

0.791

significant correlation

(p < 0.0001)

0.4 kg/year/capita to

produce one additional

Nobel laureate

improved cognitive

function associated

with regular intake of

dietary flavonoids?
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Some important distributions
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Gaussian
A.k.a. normal distribution

g(x; µ, σ) =
1√
2πσ

exp

(
− (x − µ)2

2σ2

)

Mean: E [x] = µ

Variance: V [x] = σ2

- 3 - 2 - 1φ μ
,σ

2
(

0.8

0.6

0.4

0.2

0.0

−5 −3 1 3 5

x

1.0

−1 0 2 4−2−4

x)

0,μ=
0,μ=
0,μ=
−2,μ=

2 0.2,σ =
2 1.0,σ =
2 5.0,σ =
2 0.5,σ =

Standard normal distribution: µ = 0, σ = 1

Cumulative distribution related to error function

Φ(x) =
1√
2π

x∫
−∞

e−
z2

2 dz =
1

2

[
erf

(
x√
2

)
+ 1

]

In Python: scipy.stats.norm(loc, scale)
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p-value
Probability for a Gaussian distribution corresponding to [µ − Zσ, µ + Zσ]:

P(Zσ) =
1√
2π

∫ +Z

−Z
e−

x2

2 = Φ(Z)− Φ(−Z) = erf

(
Z√
2

)
68.27% of area within ±1σ

95.45% of area within ±2σ

99.73% of area within ±3σ

90% of area within ±1.645σ

95% of area within ±1.960σ

99% of area within ±2.576σ

p-value:

probability that random process

(fluctuation) produces a measurement

at least this far from the true mean

p-value := 1− P(Zσ)

Available in ROOT: TMath::Prob(Z*Z)
and Python: 2*stats.norm.sf(Z)

Deviation p-value (%)

1σ 31.73

2σ 4.55

3σ 0.270

4σ 0.00633

5σ 0.000057 3
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Why are Gaussians so useful?
Central limit theorem: sum of n random variables approaches Gaussian

distribution, for large n

True, if fluctuation of sum is not dominated by the fluctuation of one (or a few)

terms

Good example: velocity component vx of air molecules

So-so example: total deflection due to multiple Coulomb scattering.

Rare large angle deflections give non-Gaussian tail

Bad example: energy loss of charged particles traversing thin gas layer.

Rare collisions make up large fraction of energy loss á Landau PDF

See practical part of today’s lecture
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Binomial distribution
N independent experiments

Outcome of each is either ‘success’ or ’failure’

Probability for success is p

f (k;N,p) =

(
N

k

)
pk(1− p)N−k E [k] = Np V [k] = Np(1− p)

(
N

k

)
=

N!
k!(N− k)!

binomial coefficient: number of permutations to have k successes

in N tries

Use binomial distribution to model processes with two outcomes

Example: detection efficiency = #(particles seen) / #(all particles)

In the limit N → ∞,p → 0,Np = ν = const, binomial distribution can be

approximated by a Poisson distribution
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Poisson distribution

p(k; ν) =
νk

k!
e−ν

E [k] = ν; V [k] = ν

Properties:

If n1, n2 follow Poisson distribution,

then also n1 + n2

Can be approximated by Gaussian

for large ν

Examples:

Clicks of a Geiger counter in a

given time interval

Cars arriving at a traffic light in one

minute

Number of Prussian cavalrymen

killed by horse-kicks
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Uniform distribution

f (x; a,b) =

 1
b−a

a ≤ x ≤ b

0 otherwise

Properties:

E [x] =
1

2
(a+ b)

V [x] =
1

12
(a+ b)2

Example:

Strip detector:

resolution for one-strip clusters:

pitch /
√
12
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Exponential distribution

f (x; ξ) =

 1
ξ e

−x/ξ x ≤ 0

0 otherwise

E [k] = ξ; V [k] = ξ2

Example:

Decay time of an unstable particle

at rest

f (t; τ) =
1

τ
e−t/τ

τ = mean lifetime

Lack of memory (unique to exponential): f (t− t0|t ≥ t0) = f (t)

Probability for an unstable nucleus to decay in the next minute is independent of

whether the nucleus was just created or has already existed for a million years.
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χ2 distribution
Let x1, . . . , xn be n independent standard normal (µ = 0, σ = 1) random

variables. Then the sum of their squares

z =
n

∑
i=1

x2i = ∑
i

(x′ − µ′)2

σ′2

follows a χ2 distribution with n degrees of freedom.

f (z; n) =
zn/2−1

2n/2Γ( n
2
)
e−z/2, z ≥ 0

E [z] = n, V [z] = 2n

Quantify goodness of fit, compatibility

of measurements, …
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Student’s t distribution
Let x1, . . . , xn be distributed as N(µ, σ).

Sample mean and

estimate of variance:
x̄ =

1

n
∑
i

xi , σ̂2 =
1

n− 1
∑
i

(xi − x̄)2

Don’t know true µ, therefore have to estimate variance by σ̂.

x̄−µ

σ/
√
n
follows N(0,1)

x̄−µ

σ̂/
√
n
not Gaussian.

Student’s t-distribution with n− 1

d.o.f.
f (t; n) =

Γ( n+1
2

)
√
nπΓ( n

2
)

(
1+

t2

n

)− n+1
2

For n → ∞, f (t; n) → N(t;0,1)

Applications:

Hypothesis tests: assess

statistical significance between

two sample means

Set confidence intervals (more

of that later)
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Landau distribution
Describes energy loss of a (heavy) charged particle in a thin layer of material due

to ionisation

tail with large energy loss due to occasional high-energy scattering, e.g.

creation of delta rays

f (λ) =
1

π

∫ ∞

0
exp(−u ln u− λu) sin(πu)du

λ =
∆ − ∆0

ξ

∆: actual energy loss
∆0: location parameter

ξ: material property

Unpleasant: mean and variance (all moments, really) are not defined

Tools for physicists: Statistics | SoSe 2019 | 38



Delta rays

Julien SIMON, CC-BY-SA 3.0
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Parameter estimation
Parameters of a pdf are constants that

characterise its shape, e.g.

f (x; θ) =
1

θ
e−x/θ

x: random variable

θ: parameter

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

time

0

0.02

0.04

0.06
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0.1

)τ
Pr

oj
ec

tio
n 

of
 e

xp
(-

t/

Suppose we have a sample of observed values,~x = (x1, . . . , xn),
independent, identically distributed (i.i.d.).

Want to find some function of the data to estimate the parameters:

θ̂(~x)

Often, θ is also a vector of parameters.
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Properties of estimators

Consistency Estimator is consistent

if it converges to the

true value

lim
n→∞

θ̂ = θ

Bias Difference between

expectation value of

estimator and true

value

b ≡ E [θ̂]− θ

Efficiency Estimator is efficient if

its variance V [θ̂] is small

Example: estimators for lifetime of a particle
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Unbiased estimators for mean and variance
Estimator for the mean:

µ̂ = x̄ =
1

n

n

∑
i=1

xi

b = E [µ̂]− µ = 0; V [µ̂] = σ2

n , i.e. σµ̂ = σ√
n

Estimator for the variance:

s2 = σ̂2 =
1

n− 1

n

∑
i=1

(xi − x̄)2

b = E [s2]− σ2 = 0

V [s2] =
σ4

n

(
(κ − 1) +

2

n− 1

)
κ = µ4/σ4: kurtosis.

Note: even though s2 is unbiased estimator for variance σ2,

s is a biased estimator for s.d. σ
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Likelihood function for i.i.d. data
Suppose we have a measurement of n independent values (i.i.d.)

~x = (x1, . . . , xn)

drawn from the same distribution

f (x;~θ), ~θ = (θ1, . . . , θm)

The joint pdf for the observed values~x is given by

L(~x;~θ) =
n

∏
i=1

f (xi ;~θ) likelihood function

Consider~x as constant. The maximum likelihood estimate (MLE) of the

parameters are the values ~θ for which L(~x;~θ) has a global maximum.

For practical reasons, usually use logL
(computers can cope with sum of small numbers much better

than with product of small numbers)
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ML Example: Exponential decay
Consider exponential pdf: f (t; τ) = 1

τ e
−t/τ

Independent measurements drawn from this distribution: t1, t2, . . . , tn
Likelihood function:

L(τ) = ∏
i

1

τ
e−ti/τ

L(τ) is maximal where logL(τ) is maximal:

logL(τ) =
n

∑
i=1

log f (ti ; τ) =
n

∑
i=1

(
log

1

τ
− ti

τ

)

Find maximum:

∂ logL(τ)
∂τ

= 0 ⇒
n

∑
i=1

(
−1

τ
+

ti

τ2

)
= 0 ⇒ τ̂ =

1

n
∑
i

ti
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ML Example: Gaussian
Consider x1, . . . , xn drawn from Gaussian(µ, σ2)

f (x; µ, σ2) =
1√
2πσ

e
− (x−µ)2

2σ2

Log-likelihood function:

logL(µ, σ2) = ∑
i

log f (xi ; µ, σ2) = ∑
i

(
log

1√
2π

− log σ − (xi − µ)2

2σ2

)

Derivatives w.r.t µ and σ2:

∂ logL(µ, σ2)

∂µ
= ∑

i

xi − µ

σ2
;

∂ logL(µ, σ2)

∂σ2
= ∑

i

(
(xi − µ)2

2σ4
− 1

2σ2

)
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ML Example: Gaussian
Setting derivatives w.r.t. µ and σ2 to zero, and solving the equations:

µ̂ =
1

n
∑
i

xi ; σ̂2 =
1

n
∑
i

(xi − µ̂)2

Find that the ML estimator for σ2 is biased!
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Properties of the ML estimator

ML estimator is consistent, i.e. it approaches the true value asymptotically

In general, ML estimator is biased for finite n

(need to check this)

ML estimator is invariant under parameter transformation

ψ = g(θ) ⇒ ψ̂ = g(θ̂)
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Averaging measurements with Gaussian uncertainties
Assume n measurements, same mean µ, but different resolutions σ

f (x; µ, σi) =
1√
2πσi

e
− (x−µ)2

2σ2
i

log-likelihood, similar to before:

logL(µ) = ∑
i

(
log

1√
2π

− log σi −
(xi − µ)2

2σ2
i

)

We obtain formula for weighted average, as before:

∂ logL(µ)
∂µ

∣∣∣∣
µ=µ̂

!
= 0 ⇒ µ̂ =

∑i
xi
σ2
i

∑i
1
σ2
i
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Averaging measurements with Gaussian uncertainties
Uncertainty? Taylor expansion exact, because logL(µ) is parabola:

logL(µ) = logL(µ̂) +
[

∂ logL
∂µ

]
µ=µ̂

(µ − µ̂)︸ ︷︷ ︸
=0

−h

2
(µ − µ̂)2, h = − ∂2 logL(µ)

∂µ2

∣∣∣∣∣
µ=µ̂

This means that likelihood function is a Gaussian:

L(µ) ∝ exp

(
−h

2
(µ − µ̂)2

)
with a standard deviation

σµ̂ = 1/
√
h =

 ∂2 logL(µ)
∂µ2

∣∣∣∣∣
µ=µ̂

−1

h = ∑
i

1

σ2
i

⇒ σµ̂ =

(
∑
i

1

σ2
i

)−1/2
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Uncertainty bounds
Likelihood function with only one parameter:

L(~x; θ) = L(x1, . . . , xn; θ) =
n

∏
i=1

f (xi ; θ)

and θ̂ an estimator of the parameter θ

Without proof: it can be shown that the variance of a (biased, with bias b)

estimator satisfies

V [θ̂] ≥
(1+ ∂b

∂θ )
2

E
[
− ∂2 logL

∂θ2

]
Cramér-Rao minimum variance bound (MVB)
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Uncertainty of the MLE: Approach I
Approximation

E

[
− ∂2 logL

∂θ2

]
≈ − ∂2 logL

∂θ2

∣∣∣∣∣
θ=θ̂

good for large n (and away from any explicit boundaries on θ)

In this approximation, variance of ML estimator is given by

V [θ̂] = −
(

∂2 logL
∂θ2

∣∣∣∣∣
θ=θ̂

)−1

so we only need to evaluate the second derivative of logL at its maximum.
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Uncertainty of the MLE: Approach II (‘graphical
method’)

Taylor expansion of logL around maximum:

logL(θ) = logL(θ̂) +
[

∂ logL
∂θ

]
θ=θ̂

(θ − θ̂)︸ ︷︷ ︸
=0

+
1

2

[
∂2 logL

∂θ2

]
θ=θ̂

(θ − θ̂)2 + · · ·

If L approximately Gaussian (logL approx. a parabola):

logL(θ) ≈ logLmax −
(θ − θ̂)2

2σ̂2
θ̂

Estimate uncertainties from the points where logL has dropped by 1/2 from its

maximum:

logL(θ̂ ± σ̂θ̂) ≈ logLmax −
1

2

This can be used even if L(θ) is not Gaussian
If L(θ) is Gaussian: results of approach I & II identical
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Example:
uncertainty of the decay time for an exponential decay

Variance of the estimated decay time:

∂2 logL(τ)
∂τ2

= ∑
i

(
1

τ2
− 2

ti

τ3

)
=

n

τ2
− 2

τ3
∑
i

ti =
n

τ2

(
1− 2τ̂

τ

)
Thus,

V [τ̂] = −
(

∂2 logL(τ)
∂τ2

)−1

τ=τ̂

=
τ̂2

n

⇒ σ̂τ̂ =
τ̂√
n
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Exponential decay: illustration
20 data points sampled from f (t; τ) = 1

τ e
−t/τ with τ = 2
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ML estimate:

τ̂ = 1.65

σ̂ = 1.65/
√
20 = 0.37 using quadratic approximation of L(τ)

Or, using shape of logL curve, and ’logL− 1/2’ prescription:
asymmetric errors, τ̂ = 1.65+0.47−0.34
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Exponential decay: logL for different sample sizes
10 data points
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quadratic approximation for logL
not very good

500 data points

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
 (s)τ

840−

839.5−

839−

838.5−

838−

837.5−

837−

836.5−

836−

Pr
oj

ec
tio

n 
of

 lo
g 

L
 (

 / 
s 

)
quadratic approximation for logL

excellent
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Minimum Variance Bound form parameters

f (x;~θ); ~θ = (θ1, . . . , θm)

Minimum variance bound related to Fisher information matrix:

V [θ̂j ] ≥ (I[~θ]−1)jj ; Ijk [~θ] = −E

[
∑
i

∂2 log f (xi ;~θ)

∂θj∂θk

]
= −E

[
∂2 logL(~θ)

∂θj∂θk

]
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Variance of the ML estimator form parameters
In limit of large sample size, L approaches multivariate Gaussian distribution for

any probability density :

L(~θ) ∝ exp

(
−1

2
(~θ − ~̂θ)TV−1[~̂θ](~θ − ~̂θ)

)
Variance of ML estimator reaches MVB (minimum variance bound), related to

the Fisher information matrix:

V [~̂θ] → I(θ)−1, Ijk [~θ] = −E

[
∂2 logL(~θ)

∂θj∂θk

]

Covariance matrix of the estimated parameters:

V [~̂θ] ≈
[
− ∂2 logL(~x;~θ)

∂~θ2

∣∣∣∣∣
~θ=~̂θ

]−1
Standard deviation of a single parameter:

σ̂θ̂j
=

√
(V [~̂θ])jj
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MLE in practice: numeric minimisation
Analytic expression for L(θ) and its derivatives often not easily known

Use a generic minimiser like MINUIT to find (global) minimum of − logL(θ) —

Typically uses gradient descent method to find minimum and then scans

around minimum to obtain L− 1/2 contour

(make sure you don’t get stuck in a local minimum)

á see today’s practical part for a hands-on
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Bounds on parameters in MINUIT
Sometimes, you may want to bound the allowed range of fit parameters

e.g. to prevent (numerical) instabilities or

unphysical results (‘fraction f should be in [0,1]’, ‘mass ≥ 0’)

MINUIT internally transforms bounded parameter y with an arcsin(y) function to

an unbounded parameter x:
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Bounds on parameters in MINUIT
If fitted parameter value

is close to boundary,

errors will become

asymmetric and maybe

even incorrect:

Try to find alternative parametrisation to avoid region of instability.

E.g. complex number

z = reiφ with bounds r ≥ 0, 0 ≤ φ < 2π

z = x + iy may be better behaved

If bounds were placed to avoid ‘unphysical’ region, consider not imposing

the limits and dealing with the restriction to the physical region after the fit.
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Extended ML method
In standard ML method, information about unknown parameters is encoded in

shape of the distribution of the data.

Sometimes, the number of observed events also contains information about the

parameters (e.g. when measuring a decay rate).

Normal ML method: ∫
f (x;~θ)dx = 1

Extended ML method:∫
q(x;~θ)dx = ν(~θ) = predicted number of events
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Extended ML method (II)
Likelihood function becomes:

L(~θ) = νe−ν

n! ∏
i

f (xi ;~θ) whereν ≡ ν(~θ)

And log-likelihood function:

logL(~θ) = −log(n!)− ν(~θ) + ∑
i

log[f (xi ;~θ)ν(~θ)]

log n! does not depend on parameters. Can be omitted in minimisation
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Application of Extended ML method
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Example:

Two-component fit (signal + background)

Unbinned ML fit, histogram for

visualisation only

Want to obtain meaningful estimate of the

uncertainties of signal and background

yields

Normalised pdf:

f (x; rs,~θ) = rsfs(x;~θ) + (1− rs)fb(x;~θ), rs =
s

s+ b
, rb = 1− rs =

b

s+ b

− log L̃(s,b,~θ) = s+ b− ∑
i

log[sfs(xi ;~θ) + bfb(xi ;~θ)]
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Application of Extended ML method (II)
Could have just fitted normalised pdf, with rs an additional parameter

Good estimate of the number of signal events: rs n

However, σrs n is not a good estimate for the variation of the number of signal

events: ignores fluctuations of n.

Using extended ML fixes this.
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Least squares from ML
Consider n measured values

y1(x1), y2(x2), . . . , yn(xn),
assumed to be independent

Gaussian r.v. with known

variances, V [yi ] = σ2
i
.

Assume we have a model for

the functional dependence of yi

on xi ,

E [yi ] = f (xi ;~θ)

Want to estimate ~θ

0 1 2 3 4 5 6
x

0

1

2

3

4

5

6y

Likelihood function:

L(~θ) = ∏
i

1√
2πσi

exp

−1

2

(
yi − f (xi ;~θ)

σi

)2

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Least squares from ML (II)
Log-likelihood function:

logL(~θ) = −1

2
∑
i

(
yi − f (xi ;~θ)

σi

)2

+ terms not depending on ~θ

Maximising this is equivalent to minimising

χ2(~θ) = ∑
i

(
yi − f (xi ;~θ)

σi

)2

so, for Gaussian uncertainties, method of least squares coincides with

maximum likelihood method.

Error definition: points where χ2 = χ2
min

+ Z2 for a Zσ interval

(compare: logL = logLmax − 1
2
Z2 for MLE)
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Linear least squares
Important special case: consider function linear in the parameters:

f (x;~θ) = ∑
j

aj(x)θj n data points, m parameters

χ2 in matrix form:

χ2 = (~y − A~θ)TV−1(~y − A~θ), Ai,j = aj(xi)

=~yTV−1~y − 2~yTV−1A~θ +~θTATV−1A~θ

Set derivatives w.r.t. θi to zero:

∇χ2 = −2(ATV−1~y − ATV−1A~θ) = 0

Solution:

~̂θ = (ATV−1A)−1ATV−1~y ≡ L~y
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Linear least squares
Covariance matrix U of the parameters, from error propagation

(exact, because estimated parameter vector is linear function of data points yi )

U = LVLT

= (ATV−1A)−1

Equivalently, calculate numerically

(U−1)ij =
1

2

[
∂2χ2

∂θi∂θj

]
~θ=~̂θ
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Example: straight line fit

y = θ0 + θ1x

Conditions ∂χ2/∂θ0 = 0 and ∂χ2/∂θ1 = 0 yield two linear equations with two

variables that are easy to solve.

With the shorthand notation

[z] := ∑
i

z

σ2
i

we finally obtain

θ̂0 =
[x2][y]− [x][xy]

[1][x2]− [x][x]
, θ̂1 =

−[x][y] + [1][xy]

[1][x2]− [x][x]

Simple, huh? At least, easy to program and compute, given a set of data

(I’ll put the complete calculation for this in the appendix of the slides)
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Example: straight line fit
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Data:

x y σy

1 1.7 0.5

2 2.3 0.3

3 3.5 0.4

4 3.3 0.4

5 4.3 0.6

Analytic fit result:

θ̂0 =
[x2][y]− [x][xy]

[1][x2]− [x][x]
= 1.16207

θ̂1 =
−[x][y] + [1][xy]

[1][x2]− [x][x]
= 0.613945

Covariance matrix of (θ0, θ1):

U = (ATV−1A)−1

=

(
0.211186 −0.0646035
−0.0646035 0.0234105

)
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Example: straight line fit
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Data:

x y σy

1 1.7 0.5

2 2.3 0.3

3 3.5 0.4

4 3.3 0.4

5 4.3 0.6

Numerical estimate with MINUIT:
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Fitting binned data
Very popular application of least-squares fit: fit a model (curve) to binned data (a

histogram)

Number of events occurring in each bin j is assumed to follow Poisson

distribution with mean fj .

χ2 =
m

∑
j=1

nj − fj

fj

Further common simplification: ‘modified least-squares method’, assuming that

σ2nj = nj :

χ2 ≈
m

∑
j=1

nj − fj

nj

Can get away with this when all nj are sufficiently large, but what about bins

with small contents, or even zero events?

á Frequently, bins with nj = 0 are simply excluded.

This throws away information, and will lead to biased results of your fit!
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Fitting binned data
Example: exponential distribution, 100 events

Oser,

https://www.phas.ubc.ca/~oser/p509/Lec_09.pdf

red: true distribution

black: fit

The more bins you have with

small statistics, the worse

the MLS fit becomes.

ML method gives more

reliable results in this case. If

you must use MLS, then at

least rebin your data, at the

loss of information.
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Discussion of fit methods
Unbinned maximum likelihood fit

+ no need to bin data (make full use of information in data)

+ works naturally with multi-dimensional data

+ no Gaussian assumption

+ works with small statistics

- no direct goodness-of-fit estimate

- can be computationally expensive, especially with high statistics

- visualisation of data and fit needs a bit of thought

Least squares fit

+ fast, robust, easy

+ goodness of fit ‘free of charge’

+ can plot fit with data easily

+ works fine at high statistics (computationally cheap)

- assumes Gaussian/Poissonian errors

(this breaks down if bin content too small)

- suffers from curse of dimensionality

- blind for features smaller than bin size
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Practical estimation — verifying the validity of your fits
Want to demonstrate that

your fit procedure gives, on average, the correct answer: no bias

uncertainty quoted by your fit is an accurate measure for the statistical

spread in your measurement: correct error

Validation is particularly important for low-statistics fits

intrinsic ML bias proportional 1/n

Also important for problems with multi-dimensional observables:

mis-modelled correlations between observables can lead to bias
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Basic validation strategy
Simulation study

1. Obtain (very) large sample of simulated events

2. Divide simulated events in O(100− 1000) independent samples with the

same size as the problem under study

3. Repeat fit procedure for each data-sized simulated sample

4. Compare average value of fitted parameter values with generated value

à demonstrate (absence of) bias

5. Compare spread in fitted parameter values with quoted parameter error

à demonstrate (in)correctness of error
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Practical example — validation study
Example fit model in 1D (B mass)

signal component is Gaussian

centred at B mass

background component is ARGUS

function (models phase space near

kinematic limit)
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q(m; nsig, nbkg,~psig,~pbkg) = nsigG(m;~psig) + nbkgA(m;~pbkg)

Fit parameter under study: nsig

result of simulation study:

1000 experiments

with
〈
n
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〉
= 200,

〈
n
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bkg
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= 800

distribution of nfitsig

…looks good
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Validation study — pull distribution
What about validity of the error

estimate?

distribution of error from simulated

experiments is difficult to interpret

…

don’t have equivalent of n
gen
sig

for

the error

Solution: look at pull distribution

Definition:

pull(nsig) ≡
nfit
sig

− n
gen
sig

σfitn

Properties of pull:

I Mean is 0 if no bias

I Width is 1 if error is correct
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 0.030±pullMean = -0.0246 

 0.021±pullSigma =  0.954 
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Validation study — extended ML!
As an aside, ran this toy study also with standard (not extended) ML method:

Extended
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 0.030±pullMean = -0.0246 

 0.021±pullSigma =  0.954 

σ(pull) = 0.954± 0.021

Standard
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 0.0032±pullMean = -0.00174 

 0.000051±pullSigma =  0.100000 

σ(pull) = 0.001
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Validation study — low statistics example
Special care needs to be taken when fitting small data samples,

also if fitting small signal component in large sample

Possible causes of trouble

χ2 estimators become approximate as Gaussian approximation of Poisson

statistics becomes inaccurate

ML estimators may no longer be efficient

error estimate from 2nd derivative inaccurate

Bias term ∝ 1/n may no longer be small compared to 1/
√
n

In general, absence of bias, correctness of error cannot be assumed.

Use unbinned ML fits wherever possible — more robust

explicitly verify the validity of your fit
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Fit bias at low n
Low statistics example:

model as before, but with〈
n
gen
sig

〉
= 20

Result of simulation study:
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 0.032±pullMean =  0.096 

 0.023±pullSigma =  1.023 

Distributions become asymmetric at low statistics

fit is positively biased
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Validation study — how to obtain 107 simulated events?
Practical issue: usually need very large amounts of simulated events for a fit

validation study

Of order 1000x (number of events in data), easily > 106 events

Using data generated through full (GEANT-based) detector simulation can

be prohibitively expensive

Solution: sample events directly from fit function

Technique called toy Monte Carlo sampling

Advantage: easy to do, very fast

Good to determine fit bias due to low statistics, choice of parametrisation,

bounds on parameters, …

Cannot test assumptions built in to fit model:

absence of correlations between observables, …

still need full simulation for this
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Summary of today’s lecture

Powerful tool to estimate parameters of distributions:

Maximum likelihood method

In the limit of large statistics, least squares method is equivalent to MLE

Linear least squares: analytical solution!

How to decide whether model is appropriate in the first place: next week!

goodness-of-fit, hypothesis testing, …

Whatever you use, validate your fit:

demonstrate absence of bias, correctness of error estimate
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next week: how can we choose the ’best’ fit model?



Addendum: Linear least squares (I)
Fit model: y = θ1x + θ0
Apply general solution developed for linear least squares fit:

Ai,j = aj(xi)

L = (ATV−1A)−1ATV−1, ~̂θ = L~y

AT =

(
1 1 · · · 1

x1 x2 · · · xn

)
; V−1 =


1/σ21

1/σ22
. . .

1/σ2n


ATV−1 =

(
1/σ21 1/σ22 · · · 1/σ2n
x1/σ21 x2/σ22 · · · xn/σ2n

)

ATV−1A =

(
1/σ21 1/σ22 · · · 1/σ2n
x1/σ21 x2/σ22 · · · xn/σ2n

)
1 x1

1 x2

.

.

.
.
.
.

1 xn

 =

(
∑i 1/σ2i ∑i xi/σ2i
∑i xi/σ2i ∑i x

2
i /σ2i

)
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Addendum: Linear least squares (II)
2× 2 matrix easy to invert. Using shorthand notation [z] = ∑i z/σ2

i
:

(ATV−1A)−1 =
1

[1][x2]− [x][x]

(
[x2] −[x]

−[x] [1]

)

And therefore

L = (ATV−1A)−1ATV−1

=
1

[1][x2]− [x][x]

(
[x2] −[x]

−[x] [1]

)
·
(

1/σ21 1/σ22 · · · 1/σ2n
x1/σ21 x2/σ22 · · · xn/σ2n

)

=
1

[1][x2]− [x][x]

 [x2]
σ2
1

− [x]x1
σ2
1

· · · [x2]
σ2
n
− [x]xn

σ2
n

−[x]
σ2
1

+ [1]x1
σ2
1

· · · −[x]
σ2
n

+ [1]xn
σ2
n


And finally:

θ̂0 =
[x2][y]− [x][xy]

[1][x2]− [x][x]
, θ̂1 =

−[x][y] + [1][xy]

[1][x2]− [x][x]
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Best Linear Unbiased Estimate (BLUE)

Have seen how to combine uncorrelated measurements.

Now consider n data points yi ,~y = (y1, . . . , yn) with covariance matrix V .

Calculate weighted average λ by minimising

χ2(λ) = (~y −~λ)TV−1(~y −~λ) ~λ = (λ, . . . ,λ)

Result:

λ̂ = ∑
i

wiyi , with wi =
∑k(V

−1)ik
∑k,l(V

−1)kl

Variance:

σ2
λ̂
= ~wTV~w = ∑

i,j

wiVijwj

This is the best linear unbiased estimator, i.e. the linar unbiased estimator with

the lowest variance
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BLUE
Special case: two correlated measurements

Consider two measurements y1, y2, with covariance matrix (ρ is correlation

coefficient)

V =

(
σ21 ρσ1σ2

ρσ1σ2 σ22

)

Applying formulas from above:

V−1 =
1

1− ρ2

 1
σ2
1

−ρ
σ1σ2

−ρ
σ1σ2

1
σ2
2

 ; λ̂ = wy1 + (1−w)y2

w =
σ22 − ρσ1σ2

σ2
1
+ σ2

2
− 2ρσ1σ2

; V [λ̂] = σ2 =
(1− ρ2)σ21σ22

σ2
1
+ σ2

2
− 2ρσ1σ2
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Weighted average of correlated measurements:
interesting example

adapted from Cowan’s book and Scott Oser’s lecture:

Measure length of an object with two rulers. Both are calibrated to be accurate

at temperature T = T0, but otherwise have a temperature dependency: true

length y is related to measured length L by

yi = Li + ci(T − T0)

Assume that we know ci and the (Gaussian) uncertainties. We measure L1, L2,

and T , and want to combine the measurements to get the best estimate of the

true length.
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Weighted average of correlated measurements:
interesting example

Start by forming covariance matrix of the two measurements:

yi = Li + ci(T − T0); σ2i = σ2L + c2i σ2T

cov[y1, y2] = c1c2σ2T

Use the following parameter values, just for concreteness:

c1 = 0.1 L1 = 2.0± 0.1 y1 = 1.80± 0.22 T0 = 25

c2 = 0.2 L2 = 2.3± 0.1 y2 = 1.90± 0.41 T = 23± 2

With the formulas above, we obtain the following weighted average

y = 1.75± 0.19

Why doesn’t y lie between y1 and y2? Weird!
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Weighted average of correlated measurements:
interesting example

y1 and y2 were calculated

assuming T = 23

Fit adjusts temperature and

finds best agreement at T̂ = 22

Temperature is a nuisance

parameter in this case

Here, data themselves provide

information about nuisance

parameter
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Confidence intervals
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In 2006:Mtop = 174.3± 5.1GeV/c2

What does this mean?

68% of top quarks have masses between 169.2 and 179.4GeV/c2

WRONG: all top quarks have same mass!

The probability of Mtop being in the range 169.2− 179.4GeV/c2 is 68%
WRONG: Mtop is what it is, it is either in or outside this range. P is 0 or 1.

Mtop has been measured to be 174.3GeV/c2 using a technique which has
a 68% probability of being within 5.1GeV/c2 of the true result
RIGHT
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In 2006:Mtop = 174.3± 5.1GeV/c2

What does this mean?

68% of top quarks have masses between 169.2 and 179.4GeV/c2

WRONG: all top quarks have same mass!

The probability of Mtop being in the range 169.2− 179.4GeV/c2 is 68%
WRONG: Mtop is what it is, it is either in or outside this range. P is 0 or 1.

Mtop has been measured to be 174.3GeV/c2 using a technique which has

a 68% probability of being within 5.1GeV/c2 of the true result
RIGHT

if we repeated the measurement many times, we would obtain many

different intervals; they would bracket the true Mtop in 68% of all cases
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Point estimates, limits

Often reported: point estimate and its standard deviation, θ̂ ± σ̂θ̂ .

In some situations, an interval is reported instead, e.g. when

p.d.f. of the estimator is non-Gaussian, or

there are physical boundaries on the possible values of the parameter

Goals:

communicate as objectively as possible the result of the experiment

provide an interval that is constructed to cover the true value of the

parameter with a specified probability

provide information needed to draw conclusions about the parameter or to

make a particular decision

draw conclusions about parameter that incorporate stated prior beliefs

With sufficiently large data sample, point estimate and standard deviation

essentially satisfy all these goals.
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Choices, choices!

We can choose:

The confidence level

two-sided confidence intervals: typically 68%, corresponding to ±1σ

upper (or lower) limits: frequently 90%, but 95% not uncommon …

Whether to quote an upper limit or a two-sided confidence interval

What sort of two-sided limit

central (i.e. symmetric), shortest, …

Important: document what you are doing!

Tools for physicists: Statistics | SoSe 2019 | 95



Constrained parameters
Measure a mass

MX = −2± 5GeV

or even

MX = −5± 2GeV

‘MX lies between −7 and −3’ with 68%
confidence

???

Counting experiment

Expect 2.8 background events

See 0 events; so, 90% CL upper limit is

2.3 events

so, signal < −0.5 events

???
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What’s happened?

Two views:

Nothing has gone wrong

(Up to) 10% of our 90% CL

statements can be wrong; this is

just one of them

Publish this, to avoid bias!

Everything wrong!

There are physical constraints

(masses are non-negative, so are

cross sections!)

No way to input this into the

statistical apparatus

We will not publish results that are

manifestly wrong

This is broken and needs fixing
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What should be done with ‘unphysical’ results?

Best, but mostly not possible: publish full likelihood (or log-likelihood) function.

This allows optimal combination of results, but is rarely done.

Preferred solution: publish both solutions,

i.e. the ‘raw’, maybe nonsensical two-sided confidence interval,

and one-sided C.I. taking extra constraints into account

May have to fight against (internal and external) referees who insist that

publishing a two-sided confidence interval is equivalent to claiming

“observation”
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Estimation of confidence intervals
Typically, use fit to determine event yields or parameters of a distribution

Least square fit (for binned datasets) or maximum likelihood fits (can also deal

with unbinned data)

Error definition, for one degree of freedom:

LSQ : 1σ confidence interval from S = Smin + 1

ML : 1σ confidence interval from logL = logLmax − 1
2

nσ conf. intervals from 2∆ logL = n2

See today’s practical part what happens for joint confidence region for ν

parameters
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Construction of frequentist confidence intervals
Neyman construction of ‘confidence belts’:

for a given value of parameter θ, find interval of possible measured values x

such that [x1, x2] is a CL confidence interval:

Possible experimental values x

p
a
ra

m
e
te

r 
θ x
2
(θ), θ

2
(x) 

x
1
(θ), θ

1
(x) 

����

����

����

����

x
1
(θ

0
) x

2
(θ

0
) 

D(α)

θ
0

then, for given experimental outcome x0, read off vertically range of parameter θ.

Has all nice properties one would like to have: in particular coverage

Can be pre-computed, e.g. for counting statistics (Poisson)
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Bayesian credible intervals
Bayesian approach: report full posterior p.d.f.

If a range is desired: integrate posterior p.d.f. p(θ|x)

1− α =
∫ θup

θlo
p(θ|x)dθ

e.g. 1− α = 0.9: “90% credible interval”

Several choices possible to construct [θlo, θup]:

[−∞; θlo] and [θup;∞] both correspond to probability α/2

Symmetric interval around maximum value of p, corresponding to

probability 1− α

p(θ|x) higher than any θ not belonging to the set

…
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Hypothesis tests
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Hypotheses and tests
Hypothesis test

I Goal: draw conclusions from the data

I Statement about validity of a model

I Decide which of two competing models is more consistent with data

Simple hypothesis: no free parameters

I Examples: particle is a π; data follow Poissonian with mean 5

Composite hypothesis: contains free parameters

Null hypothesis H0 and alternative hypothesis H1

I H0 often the background-only hypothesis

(e.g. Standard Model only; no additional resonance; …)

I H1 often signal or signal+background hypothesis

Question: can H0 be rejected by data?

Test statistic t: (scalar) variable that is a function of the data alone, that can

be used to test hypothesis
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Critical region
Reject null hypothesis if value of t lies in critical region: t > tcut

Probability for H0 to be rejected

while H0 is true:

∫ ∞

tcut

f (t|H0)dt = α
α: “size” or significance

level of test

Probability for H1 to be rejected

even though it is true:

∫ tcut

−∞
f (t|H1)dt = β

1− β: power of the test
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Type I and Type II errors

Statistics jargon, getting more and more common also in HEP

Type I error: Probability of rejecting null hypothesis H0 when it is actually true

also known as false discovery rate

Type II error: Probability to fail to reject null hypothesis H0 while it is actually false

also known as false exclusion rate
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p-value
p-value: probability to observe data set that is as consistent or worse with null

hypothesis as the actual observation

test statistic: q0

pdf for q0 under H0: f (q0|0)
critical region: large values of q0

q0,obs: observed value in data

p0 =
∫ ∞

q0,obs

f (q0|0)dq0

pdf for q0 under H0 frequently needs to be estimated with simulation

p-value is a random variable (contrast: significance level α fixed before

measurement).

if p0 < α: reject H0

1− p0: confidence level of test
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p-value and significance

(a) 
_1_ e-x2/2

/ \'2n

p-value

I

1--- z ---1 X 

if p0 < α, then reject null hypothesis

Frequent convention in HEP:

for discovery, require p < 2.87× 10−7

for exclusion, require p < 0.05

translate p-value to significance Z via

Standard Normal pdf

p0 =
∫ ∞

Z

1√
2π

e−x2/2dx = 1− Φ(Z)

Z = Φ−1(1− p0)

Significance of 5 (1.64) s.d.

corresponds to p = 2.87× 10−7(0.05)
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how can we objectively tell which model fits better?



Least squares: Goodness-of-fit

Minimum value of S in the least squares method is a measure of agreement

between model and data:

Smin =
n

∑
i=1

(
yi − f (xi ;~̂θ)

σi

)2

Large value of Smin: can reject model.

If model is correct, then Smin for repeated experiments follows a χ2 distribution

with ndf degrees of freedom:

f (t; ndf) =
tndf/2−1

2ndf/2Γ( ndf
2
)
e−t/2, t = χ2

min

with ndf = n−m = number of data points− number of fit parameters
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Least squares: Goodness-of-fit

Expectation value of χ2 distribution is ndf

á χ2 ≈ ndf indicates good fit

Consistency of a model with data is quantified with the p-value:

p =

+∞∫
Smin

f (t; ndf)dt

p-value: probability to get a χ2
min

at least as high as the observed one, if the

model is correct.

p-value is not the probability that the model is correct!
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p-value for the straight line fit example
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x
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Smin = 2.29557, ndf = 3

p-value: prob(Smin, ndf) = 0.51337011
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p-value for the straight line fit example
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Smin = 2.29557, ndf = 3

p-value = 0.5134

θ̂0 = 1.16± 0.46

θ̂1 = 0.614± 0.153
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Smin = 18.3964, ndf = 4

p-value = 0.00103

θ̂0 = 2.856± 0.181

Stat. uncertainty on fit parameter

does not tell us whether model is

correct
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Goodness of fit for unbinned ML fits
In the case of unbinned ML fit, can bin data and model prediction into

histogram and then perform χ2 test

Consider the likelihood ratio

λ =
L(~n|~ν)
L(~n|~n) , ~ν = ~ν(~θ)

For multinomially (“M”, ntot fixed) and Poisson distributed data (“P”), one obtains

for k bins

λM =
k

∏
i

(
νi
ni

)ni

, λP = entot−νtot
k

∏
i

(
νi
ni

)ni

Now consider test statistic

t ≡ −2 log λ
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Goodness of fit for unbinned ML fits
For multinomially distributed data, in the large sample limit

tM = −2 log λM = 2
k

∑
i=1

ni log
ni

ν̂i

follows χ2 distribution for k −m− 1 degrees of freedom.

For Poisson distributed data,

tP = −2 log λP = 2
k

∑
i=1

(
ni log

ni

ν̂i
+ ν̂i − ni

)

follows χ2 distribution for k −m degrees of freedom.

Note: always remember to quote χ2 and ndf separately, instead of just the

‘reduced χ2/ndf — there is a difference!

prob(15,10) = 0.132

prob(1500,1000) = 1.05× 10−22
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Profile likelihood ratio:
hypothesis tests with nuisance parameters

Base significance test on the profile likelihood

λ(µ) =
L(µ, ˆ̂θ)
L(µ̂, θ̂)

=
maximised L for specified µ

globally maximised L

Likelihood ratio of point hypotheses gives optimum test

(Neyman-Pearson lemma).

Composite hypothesis: parameter µ is only fixed under H0, but not under H1.

Wilks’ theorem:

q0 = −2 log λ

asymptotically approaches chi-square distribution for k degrees of freedom,

where k is the difference in dimensionality of H1 and H0
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Profile likelihood ratio
Example: B mass fit from last time; 40 signal events, 1000 background events
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d) scan of L(nsig, θ̂) with nuisance

parameters fixed to values from

global minimum

profile likelihood: L(nsig; ˆ̂θ)
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Profile likelihood ratio
Example: B mass fit from last time; 40 signal events, 1000 background events
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2∆ logL = 17.94

And therefore p-value for H0:

1.13927× 10−5, or significance for

nsig 6= 0

Z =
√
2∆ logL = 4.2σ

(one degree of freedom!)Tools for physicists: Statistics | SoSe 2019 | 117



Profile likelihood ratio
Example: B mass fit from last time; 40 signal events, 1000 background events
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signal peak free in fit: two additional

nuisance parameters (that cannot

really be determined when

nsig = 0).

p-value = 0.0697557

Z = 1.48 σ
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Look-elsewhere effect

A Swedish study in 1992 tried to determine whether or not power lines caused

some kind of poor health effects. The researchers surveyed everyone living

within 300 meters of high-voltage power lines over a 25-year period and looked

for statistically significant increases in rates of over 800 ailments. The study

found that the incidence of childhood leukemia was four times higher among

those that lived closest to the power lines, and it spurred calls to action by the

Swedish government. The problem with the conclusion, however, was that they

failed to compensate for the look-elsewhere effect; in any collection of 800

random samples, it is likely that at least one will be at least 3 standard

deviations above the expected value, by chance alone. Subsequent studies

failed to show any links between power lines and childhood leukemia, neither in

causation nor even in correlation.

https://en.wikipedia.org/wiki/Look-elsewhere_effect
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Look-elsewhere effect

In general, a p-value of 1/n is likely to occur after n tests.

Solution: apply ‘trials penalty’, or ‘trials factor’, i.e. make threshold more

stringent for large n.

Not entirely trivial to choose trials factor: need to count effective number of

‘independent’ regions.

Suppose you look at a range of invariant masses large compared to the mass

resolution, then N ∼ ∆M/σM.

See e.g. Gross & Vitells, arXiv:1005.1891 [physics.data-an] for a recipe

Tools for physicists: Statistics | SoSe 2019 | 119



Look-elsewhere effect

Can make substantial change to claimed significance:

for example ATLAS observation of

an enhancement around 750 GeV

in γγ invariant mass:

Local significance 3.9σ,

corresponding to a p-value of

p = 9.6× 10−5,

i.e. roughly 1:10000

Global significance only 2.1σ,

corresponding to a p-value of

p = 0.0357,

i.e. roughly 1:28
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(Final) digression: p-value debate

In many fields (esp. social sciences, psychology, etc.), significant means

p < 0.05

Relatively weak statistical standard, but often not realised as such!

We’ve seen that getting p < 0.05 isn’t that rare, especially if you run many

experiments!

May be a contributing factor to the ‘reproducibility crisis’

and may be exacerbated by p-value hacking
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5σ for discovery in particle physics?
5σ corresponds to p-value of 2.87× 10−7 (one-sided test)

History: many cases where 3σ and 4σ effects have disappeared with more

data

Look-elsewhere effect

Systematics: often difficult to quantify / estimate

Subconscious Bayes factor:

I physicists tend to (subconsciously) assess Bayesian probabilities p(H1|data)
and p(H0|data)

I If H1 involves something very unexpected (e.g. superluminal neutrinos), then

prior probability for H0 is much larger than for H1

I Extraordinary claims require extraordinary evidence

May be unreasonable to have single criterion for all experiments

Louis Lyons, Statistical issues in searches for new physics, arXiv:1409.1903
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p-value hacking
http://xkcd.com/822
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