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The scientific method: how we create ‘knowledge’

Theory / model Experiment

usually mathematical = modify or even reject theory in
case of disagrement with data

m self-consistent
m if theory requires too many
adjustments it becomes

unattractive

m simple explanations, few (arbitrary)
parameters

m testable predictions / hypotheses
m generate surprises

Advance of scientific knowledge is evolutionary process
with occasional revolutions

Statistical methods are important part of this process
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Statistics in science

Statistics is needed to:

m characterise and summarise experimental results (impractical to always
deal with raw data)
= quantify uncertainty of a measurement

m assess whether two measurements of the same quantity are compatible,
combine measurements

m estimate parameters of an underlying model or theory

m test hypotheses:
determine whether a model is compatible with data
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Aims of this mini-series

m Statistical inference: from data to knowledge

» Should we believe a physics claim?

» Develop intuition

» Know (some) pitfalls: avoid making mistakes others have already made
= Understand statistical concepts

> Ability to understand physics papers
» Know some methods / standard statistical toolbox

m Use tools

» Hands-on part with Python / Jupyter
» Application to your own work
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Practical information

Three sessions:
1. Basics, introduction, statistical distributions
2. Parameter estimation

3. Confidence intervals, hypothesis testing

About 60 minutes of lecture, then > 30 minutes hands-on tutorial

I hope this will be useful for you,

but keep in mind that there is much more
to statistics than can be covered

in three brief hours.
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Two quick questions

https://pingo.coactum.de/529916

m What is your (main) area of research / interest?

= Which programsming language(s) do you speak”?
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Useful reading material

Books:
m G. Cowan, Statistical Data Analysis

m R. Barlow, Statistics: A guide to the use of statistical methods in the
physical sciences

m L. Lyons, Statistics for Nuclear and Particle Physicists
m A. J. Bevan, Statistical data analysis for the physical sciences

m G. Bohm, G. Zech, Introduction to Statistics and Data Analysis for
Physicists (available online)

Lectures on the web:
m G. Cowan, Royal Holloway University London: Statistical Data Analysis

m K. Reygers, U Heidelberg, Stat. Methods in Particle Physics
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http://www-library.desy.de/preparch/books/vstatmp_engl.pdf
http://www.pp.rhul.ac.uk/~cowan/stat_course.html
https://www.physi.uni-heidelberg.de/~reygers/lectures/2017/smipp/

Dealing with uncertainty

m Underlying theory is probabilistic (quantum mechanics / QFT)
source of true randomness

= Limited knowledge about measurement process
even without QM
random measurement errors

m Things we could know in principle, but don’t
e.g. from limitations of cost, time, ...

Quantify uncertainty using probability
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Mathematical definition of probability

Kolmogorov axioms:

Consider a set S (the sample space) with subsets A, B, ...(events).

Define a function P : $B(S) — [0, 1] with

1. P(A) >0foralAeS S
2. P(S) =1
3. PAUB) =P(A)+P(B)ifANB =@, A

i.e. A and B are exclusive
From these we can derive further properties:
m P(A)=1-P(A)
m P(AUA) =1
m P(@)=0
m IfA € B, then P(A) < P(B)

x P(AUB) = P(A) + P(B) — P(ANB)

for the mathematically inclined: proper treatment will use measure theory
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Interpretations

m Classical definition

» Assign equal probabilities based on symmetry of problem,
e.g. rolling ideal dice: P(6) = 1/6
» difficult to generalise, sounds somewhat circular

m Frequentist: relative frequency
> A, B,...outcomes of a repeatable experiment

P(A) = lim times outcome is A

n—oo n

m Bayesian: subjective probability
» A,B,...are hypotheses (statements that are either true or false)

P(A) = degree of belief that A is true

...all three definitions consistent with Kolmogorov’s axioms
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Conditional probability, independent events

Conditional probability for two events A and B:

Pule) = P8 57

Example: rolling dice

P(n<8)n(neven) 1/6 . 4

P(n < 3|n even) = P(n even) /%

Events A and B independent <= P(ANB) = P(A) -P(B)
A is independent of B if P(A|B) = P(A)
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Bayes’ theorem

Definition of conditional probability:

P(ANB)
P(B)

P(BNA)

P(AIB) = =7

and  P(BJA) =
But obviously P(ANB) = P(BNA), so:

me)zf@gg?ﬂ

Allows to ‘invert’ statements about probability:
of great interest to us. Want to infer P(theory|data) from P(data|theory)

Often these two are confused, knowingly or unknowingly
(advertising, political campaigns, ...)
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Example for Bayes’ theorem: Rare disease
Base probability (for anyone) to have a disease D:

P(D) = 0.001
P(no D) = 0.999
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Example for Bayes’ theorem: Rare disease
Base probability (for anyone) to have a disease D:

P(D) = 0.001
P(no D) = 0.999

Consider a test for D: result is positive or negative (+ or -):

P(+|D) = 0.98 P(+|no D) = 0.03
P(—|D) = 0.02 P(—|no D) = 0.97
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Example for Bayes’ theorem: Rare disease
Base probability (for anyone) to have a disease D:

P(D) = 0.001
P(no D) = 0.999

Consider a test for D: result is positive or negative (+ or -):

P(+|D) = 0.98 P(+|no D) = 0.03
P(—|D) = 0.02 P(—|no D) = 0.97

Suppose your result is +; should you be worried?
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Example for Bayes’ theorem: Rare disease
Base probability (for anyone) to have a disease D:
P(D) = 0.001
P(no D) = 0.999

Consider a test for D: result is positive or negative (+ or -):

P(+|D) = 0.98 P(+|no D) = 0.03

P(—|D) = 0.02 P(—|no D) =0.97
Suppose your result is +; should you be worried?

P(+|D)P(D)
(+|D)P(D) + P(+|no D)P(no D)
B 0.98 x 0.001
" 0.98 x 0.001 + 0.03 x 0.999

P(D|+) = B

= 0.032

Probability that you have disease is 3.2%, i.e. you're probably ok
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Bayes’ theorem: degree of belief in a theory

prior (before seeing

likelihood the data, subjective)

\

P(datal|theory) P(theory)

P(theory|data) = P(data)

posterior probability, \
i.e., after seeing the data normalization
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Criticisms — Frequentists vs. Bayesians

m Criticisms of the frequentist interpretation
» n — oo can never be achieved in practice. When is n large enough?
> Want to talk about probabilities of events that are not repeatable
» P (rain tomorrow) — but there’s only one tomorrow
> P(Universe started with a big bang) — only one universe available
» P is not an intrinsic property of A, but depends on how the ensemble of
possible outcomes was constructed
> P(person | talk to is a physicist) strongly depends on whether | am at a conference
or at the beach
m Criticisms of the subjective interpretation

» ‘Subjective’ estimate has no place in science
» How to quantify the prior state of our knowledge?

‘Bayesians address the questions everyone is interested in by using
assumptions that no one believes, while Frequentists use impeccable
logic to deal with an issue that is of no interest to anyone’ — Louis
Lyons

JGlu
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Describing data
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Random variables and probability density functions

Random variable:

m Variable whose possible values are numerical outcomes of a random
phenomenon

Probability density function (pdf) of a continuous variable:

P(X found in [x, x + dx]) = f(x)dx
Normalisation:

—+o0
/ f(x)dx =1 X must be somewhere

—00

Tools for physicists: Statistics | SoSezor9 | 18



Histograms

Histogram

m representation of the frequencies
of numerical outcome of a random
phenomenon

pdf = histogram for
m infinite data sample
m zero bin width
m normalised to unit area

PO = Jim, %

Tools for physicists: Statistics | SoSe 2019 | 19
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Median, mean, and mode

Arithmetic mean of a data sample
(‘sample mean’):

1N
X = N EX,‘
i=1
Mean of a pdf:
= (x)= /Xf(X)dX
= expectation value E[x]
Median:

point with 50% probability above and
50% prob. below

Mode:
most likely value
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Variance, standard deviation

Variance of a distribution:

V() = [P0 (= p)? = Ellx—p)?]

Variance of a data sample

V() = o D0 — )2 =38 12

Requires knowledge of true mean p. Replacing u by sample mean X results in
underestimated variance!
Instead, use this:

Standard deviation:

Tools for physicist

atistics | SoSezorg | 21



Multivariate distributions

Outcome of an experiment
characterised by tuple (x1, ..., Xn) ¥

P(ANB) =f(x,y)dxdy
with f(x, y) the ‘joint pdf’

Normalisation

Sometimes, only the pdf of one
component is wanted:

f1(X1)=/"'/f(X1 ----- Xp)dxp - - - dxp

= projection of joint pdf onto individual

atistics | SoSezotg | 22
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Covariance and correlation

Covariance:
cov[x,y] = E[(x — ux)(y — py)]

Correlation coefficient:
cov[x,y|

ox Oy

Pxy =

If x, y independent:
Elc = m)y = m)] = [ (= m)i)dx [ =)y )y = 0

Note: converse not necessarily true
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Covariance and correlation
1.0 0.8

S
5.

0.4
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Linear combinations of random variables

Consider two random variables x and y with known covariance cov|x, y]

x+y) =X +)
(ax) = a(x)
Viax] = a®Vx|
Vix+y] = VIx] + V[y] + 2 cov|x,y]

For uncorrelated variables, simply add variances.
How about combination of N independent measurements (estimates) of a
quantity, x; + o, all drawn from the same underlying distribution?

’
X=5 Y x; best estimate
VINK] = N?¢
Ox = —F—=0

Tools for physicist
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Combination of measurements: weighted mean

Suppose we have N independent measurements of the same quantity, but
each with a different uncertainty: x; + J;
Weighted sum:

X = W1X{ + WoXop
6% = w262 + w3sl
Determine weights w1, w, under constraint wq 4+ wsy = 1 such that 62 is
minimised:
1/6?
2 2
1/65+1/65
If original raw data of the two measurements are available, can improve this

estimate by combining raw data
alternatively, use log-likelihood curves to combine measurements

P =

Tools for physicists: Statistics | SoSezo19 | 26



Correlation # causation
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significant correlation
(p < 0.0001)

0.4 kg/year/capita to
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Nobel laureate

improved cognitive
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Gaussian

A.k.a. normal distribution 10
1 (x — )2 ’
XU, 0) = — =7
glip.o) V2o P ( 202
Mean: E[x] = u
Variance: V[x] = ¢?

p=0, 0%=02,— -
H=0, 07=1.0,—

p=0, 0?=50,—
H=-2, 07=05,—

Standard normal distribution: ¢ = 0,0 =1
Cumulative distribution related to error function

e For = % {erf (%) + 1]

In Python: scipy.stats.norm(loc, scale)

—x

3
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p-value

Probability for a Gaussian distribution corresponding to [y — Zo, y + Zo:

P(Zo) = W / +Z

68.27% of area within +£10
95.45% of area within +20
99.73% of area within +3c

p-value:

probability that random process
(fluctuation) produces a measurement
at least this far from the true mean

p-value := 1 — P(Zo)

Available in ROOT: TMath: :Prob (Z*Z)
and Python: 2*stats.norm.sf (Z)
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6 — BZ) — B(-2) = erf (i)

V2

90% of area within +£1.645¢0
95% of area within +=1.960¢
99% of area within +£2.5760

Deviation p-value (%)
1o 31.78
20 4.55
30 0.270
litos 0.006 33
50 0.0000573




Why are Gaussians so useful?

Central limit theorem: sum of n random variables approaches Gaussian
distribution, for large n
True, if fluctuation of sum is not dominated by the fluctuation of one (or a few)
terms

m Good example: velocity component vy of air molecules

m S0-so0 example: total deflection due to multiple Coulomb scattering.
Rare large angle deflections give non-Gaussian tail

m Bad example: energy loss of charged particles traversing thin gas layer.
Rare collisions make up large fraction of energy loss = Landau PDF

See practical part of today’s lecture
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Binomial distribution

N independent experiments
m Outcome of each is either ‘success’ or "failure’

m Probability for success is p

f(k;/\/,p):(/Z)pkU—p)N‘k Ekl=No  VIk] =Ne(1-p)

Use binomial distribution to model processes with two outcomes
Example: detection efficiency = #(particles seen) / #(all particles)

In the limit N — oo, p — 0, Np = v = const, binomial distribution can be
approximated by a Poisson distribution
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Poisson distribution

k

1%
p(k,]/) = Fe v

Elkl]=v; Vk]=v
Properties:

m [f n4, no follow Poisson distribution,
then also ny +no

m Can be approximated by Gaussian
for large v

Examples:

m Clicks of a Geiger counter in a
given time interval

m Cars arriving at a traffic light in one
minute

Tools for physicists: Statistics | SoSez019 | 3
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k

= Number of Prussian cavalrymen
killed by horse-kicks

Number of deaths Actual number Poisson
in 1 corps in 1 year of such cases prediction
0 109 108.7
1 65 66.3
2 22 20.2
3 3 4.1
4 1 0.6
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Uniform distribution

;

—— a<x<b
f(x;a,b)y={b2 " ="~

0 otherwise

Properties:

1

12(5:1—1—13)

Example:
m Strip detector:

resolution for one-strip clusters:

pitch /12
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Exponential distribution

1.6
1e=x/¢ <0 |
e X
fig)=1¢ - -
0 otherwise 1.2r
Lo
X
_x. _ 2 o 0.8
Ell =g VK =¢ |
Example: 0.4
0.2f
m Decay time of an unstable particle 0.0 ‘ :

A=05 |
— =1 |
A=15 |

at rest
f(tir) = Lo t/T
' T
T = mean lifetime

Lack of memory (unique to exponential): f(t — to|t > tp) = f(t)
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x? distribution

Let x1, ..., xn be nindependent standard normal (x = 0, 0 = 1) random
variables. Then the sum of their squares

X*P‘
#-p ot

uMs

i

follows a x? distribution with n degrees of freedom.

fi(z) X

zh/2-1 0.5 k=1

f(z;n 78_2/2, z>0 — k=2

= gver(g) § 04 =i

Elzl =n, V]zl=2n 03 = ZiS
Quantify goodness of fit, compatibility 02
of measurements, ... 0.1
0.0

0 1 2 3 4 5 6
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Student’s t distribution

Let x1,...,xn be distributed as N(y, o).

Sample mean and
estimate of variance:

X =

S| =

]
ZX" 0% = n—1 Z(X’ —%)?
I 1

Don’t know true p, therefore have to estimate variance by ¢-.

X
N follows N(O, 1)

Forn — oo, f(t;n) — N(t;0,1)
Applications:
m Hypothesis tests: assess
statistical significance between
two sample means

m Set confidence intervals (more
of that later)
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Landau distribution

Describes energy loss of a (heavy) charged particle in a thin layer of material due

to ionisation
tail with large energy loss due to occasional high-energy scattering, e.g.

creation of delta rays

1 00 0) = ]? .[’/o"’ neesin () du

f(A) = ;/ exp(—uInu — Au)sin(rtu)du 13

0

A= A—Ao 52 10

¢
A: actual energy loss 31
Ag: location parameter
¢: material property 2 0 2 4 6 8 10

A

Unpleasant: mean and variance (all moments, really) are not defined
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Delta rays
"

Proton with « delta ray »
(electrons)

Julien SIMON, CC-BY-SA 3.0
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Parameter estimation

Parameters of a pdf are constants that

£ off ]
characterise its shape, e.g. g
»2 0.08p; B
1 /9 .5 b ]
f(x;0) = ae’x g 0%
g T
. T oo 1
x: random variable :
0: parameter 00 ]
TR T ¥R YRR Y R
time
Suppose we have a sample of observed values, X = (X1, ...,Xn),

independent, identically distributed (i.i.d.).

Want to find some function of the data to estimate the parameters:
6(x)

Often, 6 is also a vector of parameters.
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Properties of estimators

Consistency Estimator is consistent
if it converges to the
true value

lim =0
n—oo
Bias Difference between
expectation value of
estimator and true
value

b=E[f]—6

Efficiency Estimator is efficient if
its variance V/[0] is small

Tools for physicists: Statistics | SoSezo19 | 41

/ best
9(;0) A
large / \/ \.- biased
variance /) |
,’/ \
g, \ ~
T 0
0
Example: estimators for lifetime of a particle
Estimator Consistent?  Unbiased?  Efficient?
7 = hibtedtly “’:' = yes yes yes
7 = htbt.tt “nf'l thy yes no no
T=t no yes no
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Unbiased estimators for mean and variance

Estimator for the mean:

1 n
p=Xx= EZXI
i=1
A A~ 2,
b=E[p]-—p=0V[p]=F ie =%
Estimator for the variance:
o o 1 ¢ N2
§ =07 = Z(X,—X)

2 o 2
V[s?] = z ((K_ 1) + ni) K = uq/0%: kurtosis.

Note: even though s2 is unbiased estimator for variance o2,

S is a biased estimator for s.d. o
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Likelihood function for i.i.d. data
Suppose we have a measurement of n independent values (i.i.d.)
X=(X1,...,Xn)
drawn from the same distribution
f;8), 6=(61,....0m)

The joint pdf for the observed values X is given by

n
LX:0) =T]rxi: 6 likelinood function
i=1
Consider X as constant. The maximum likelihood estimate (MLE) of the
parameters are the values 6 for which £(X; §) has a global maximum.

For practical reasons, usually use log £
(computers can cope with sum of small numbers much better
than with product of small numbers)
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ML Example: Exponential decay

Consider exponential pdf: f(t; T) = 1 e t/T
Independent measurements drawn from this distribution: 1, to

Likelihood function:

L(7) is maximal where log £(7) is maximal:

log L(T
Find maximum:
dlog L(7) L
o =0 = L
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ML Example: Gaussian

Consider x1, ..., Xn drawn from Gaussian (, 02)

fxu o) = F(r

Log-likelihood function:

log £(, %) = Y logf(x;; 4, o) | log o —
og L(,07) ;Og(lu Z(ogm og

Derivatives w.r.t u and o?:

dlog L(p,0?)

v X—K,  dlogL(uo?) _ :
ou _; g2 ' 902 _;
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ML Example: Gaussian

Setting derivatives w.r.t. y and o2 to zero, and solving the equations:

1 —
=% 02 = =) (% — )
i

Find that the ML estimator for 2 is biased!
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Properties of the ML estimator

m ML estimator is consistent, i.e. it approaches the true value asymptotically

m In general, ML estimator is biased for finite n
(need to check this)

m ML estimator is invariant under parameter transformation

p=g(0) = =90
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Averaging measurements with Gaussian uncertainties

Assume n measurements, same mean y, but different resolutions o

1 - 20/2

fxp0p) = o
I

log-likelihood, similar to before:

2
log L(n) = Z (Iog \/127_[ —logoj — ()(,205))

i

We obtain formula for weighted average, as before:

dlog L(p) ! L ;7[
—_— =0 = n= ]
3]1 u=p Z/' o2
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Averaging measurements with Gaussian uncertainties
Uncertainty? Taylor expansion exact, because log £() is parabola:

. dlog L . h D 02 log L(1t)
log L(y) = log L +{ } L—f) —=(p— , h=—- —F5"-
(1) M+, ) (n =) —5(m—p) P

H=j

=0

This means that likelihood function is a Gaussian:
h 12
L) cexp | =5 —p)

with a standard deviation

2
op = 1/vVh = (8 I(ggyf(y)

’ ; —-1/2
h:Z; = ‘Tf—<22>
1

i
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Uncertainty bounds

Likelihood function with only one parameter:
n
LX;0) =L(x1,....xn;0) = [f(x::0)
=1
and @ an estimator of the parameter 6

Without proof: it can be shown that the variance of a (biased, with bias b)
estimator satisfies -
1+ 50)

Vie] >

Cramér-Rao minimum variance bound (MVB)
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Uncertainty of the MLE: Approach I

Approximation

92 log L 02 log L
E|— ~—
002 062

6=0

good for large n (and away from any explicit boundaries on 6)

In this approximation, variance of ML estimator is given by

92 log L -
Vil = —
. ( 96 ’9:@)

so we only need to evaluate the second derivative of log £ at its maximum.
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Uncertainty of the MLE: Approach II (‘graphical
method’)

Taylor expansion of log £ around maximum:

2
log £(0) = log £(8) + | 2L g gy 11 |98 LT g g2
0 |os 2| 00 |,

=0

If £ approximately Gaussian (log £ approx. a parabola):

log L(0) =~ log Limax — —

Estimate uncertainties from the points where log £ has dropped by 1/2 from its

maximum: 1

log £(6 + ;) = log Limax — 5
This can be used even if £(0) is not Gaussian

If £(0) is Gaussian: results of approach | & Il identical
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Example:
uncertainty of the decay time for an exponential decay

Variance of the estimated decay time:

0° log L(T) 1 t; n 2 n 2%
R C R B EE (R

Thus,
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Exponential decay: illustration

20 data points sampled from f(t; T) = %e*t/T with T =2

]
D

i
n |
@

15}

T

1

Events/ (0.1)

Projectionof logL (/s)
3
[é:1
T
1

—29 E 1 1 1 1 1 1 1
8 9 10 12 14 16 18 22 24 26 28
time (9

ML estimate:

5
5/v20 = 0.37 using quadratic approximation of £(1)

tT=16
1.6

Or, using shape of log £ curve, and 'log L — 1/2’ prescription:
asymmetric errors, t=1.65"541
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Exponential decay: log L for different sample sizes

10 data points
12 e

-13]

QLR RRRR

Projectionof logL (/s)
]
I =
B &

|

iN

>

o
f

-15|

-155} E
T A D T T
©1 12 14 16 1.8 2 22 24 26 28 3

(s

quadratic approximation for log £
not very good
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500 data points
7/;—836:”‘

8365

L

2 -s37F

2
N
T

Prpjection of lo
&
5

[o) FHNEE RIS NN FEWES | | e

8385

839

-839.5F
P PR R TR 00 1§ I T W
8401571471618 2 22 24 26 28
(9

quadratic approximation for log £
excellent




Minimum Variance Bound for 7 parameters

fx;6); 6=(61,..., Om)

Minimum variance bound related to Fisher information matrix:

VI = (18] ) Ikl6] = —E£

Z 02 logf(x;; 6) - _F 02 log L(6)
00, | 96,00,

i
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Variance of the ML estimator for 7 parameters

In limit of large sample size, £ approaches multivariate Gaussian distribution for
any probability density :

L£(5) o exp (7%(9‘7 BTV - é’))

Variance of ML estimator reaches MVB (minimum variance bound), related to
the Fisher information matrix:

—.

Ve 10, ) = £

02 log L(6)
36,00

Covariance matrix of the estimated parameters:

 log L(X; 6)
062

—1
éé}

V[§z|:

Standard deviation of a single parameter:
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MLE in practice: numeric minimisation

Analytic expression for £(#) and its derivatives often not easily known
Use a generic minimiser like MINUIT to find (global) minimum of — log £(0) —

Typically uses gradient descent method to find minimum and then scans
around minimum to obtain £ — 1/2 contour

(make sure you don’t get stuck in a local minimum)

= see today’s practical part for a hands-on

Tools for physicists: Statistics | SoSez019 | $8



Bounds on parameters in MINUIT

Sometimes, you may want to bound the allowed range of fit parameters
e.g. to prevent (numerical) instabilities or
unphysical results (‘fraction f should be in [0, 1], ‘mass > 0’)

MINUIT internally transforms bounded parameter y with an arcsin(y) function to
an unbounded parameter x:

15 T T T

-

(]
o . —
© c ]
a =
o il i
5 e 3
Iy =] C 7
o Q 05— —
e E 3
= £ E ]
w © - 3
— = 0
[} © C 1
E & E E
7] T 5 =
= 9] N ]
X ° =
w e 4= =
=] = =
o C I J
m 15 T | Nl N I | L | | =
1 E ] £ -4 2 (] 2 4 6 8 0

1
x
MINUIT internal parameter space (-00,+)

L'J

Internal Error
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Bounds on parameters in MINUIT

If fitted parameter value

[
. g 15 T T T T T T —
is close to boundary, 2k E
errors will become g i E
. 0.5 |
asymmetric and maybe 5 £k / E
. 0_ -
even incorrect: o e E E
- O o5 3
] @ E =
c T E 3
. c al= 1
9 2 e E
o iy ~=== eSS I ST I

~ %

MINUIT internal parameter space (-00,+

\_Y_I

Internal error

= Try to find alternative parametrisation to avoid region of instability.
E.g. complex number
z = re/? with bounds r > 0,0 < ¢ < 27
zZ = X + Iy may be better behaved
m If bounds were placed to avoid ‘unphysical’ region, consider not imposing
the limits and dealing with the restriction to the physical region after the fit.
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Extended ML method

In standard ML method, information about unknown parameters is encoded in
shape of the distribution of the data.

Sometimes, the number of observed events also contains information about the
parameters (e.g. when measuring a decay rate).

Normal ML method:
/ £(x; B)dx = 1
Extended ML method:

/q(x; 0)dx = v(6) = predicted number of events
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Extended ML method (II)

Likelihood function becomes:

%
L£(9) - Hf X;; 6 wherev = v(f)

And log-likelihood function:
log £(6) = —log(n!) — v(6 +Zlog (x;; 0)v(6)]

logn! does not depend on parameters. Can be omitted in minimisation

Tools for physicists: Statistics | SoSezo19 | 62



Application of Extended ML method

Example:
3 e B m Two-component fit (signal + background)
> r ]
Py F 4 w Unbinned ML fit, histogram for
& F ] visualisation only
> L 3
. F E = Want to obtain meaningful estimate of the
30 4 uncertainties of signal and background
[ yields
20 B
10F
R g
% 1 2 3 4 5 6 7 9 10
X

Normalised pdf:

N o - S
f(X,rs,g):rsfs(X,9)+(17rs)fb(x,9), rS:m,rb: —_ _S+b

—log £(s,b,0) =s+b— Y log|sfs(x;; 6) + bf (x;; 6)]
i
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Application of Extended ML method (II)

Could have just fitted normalised pdf, with rs an additional parameter
Good estimate of the number of signal events: rgn

However, o7, n is not a good estimate for the variation of the number of signal
events: ignores fluctuations of n.

Using extended ML fixes this.
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Least squares from ML

Consider n measured values
y1(x1),y2(x2), ..., ¥n(Xn),
assumed to be independent
Gaussian r.v. with known
variances, V[y;] = o?.

Assume we have a model for
the functional dependence of y;

on Xxj,
Ely;] = f(x::6)
Want to estimate

Likelihood function:

Tools for physicists: Statistics | SoSezo19 | 65

[}

]

= w
L B L B

S8
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Least squares from ML (II)

Log-likelihood function:

log £(6

N \

/
Maximising this is equivalent to minimising
Fx:8) )\
Xz(g) _ Z ()// —f(x; ))
I
so, for Gaussian uncertainties, method of least squares coincides with

maximum likelihood method.

Error definition: points where x° = x2.. + Z? for a Zo interval
(compare: log £ = log Lmax — 5Z° for MLE)

Tools for physicist
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Linear least squares
Important special case: consider function linear in the parameters:
f(x;0) = Y ai(x)6; n data points, m parameters
J
X2 in matrix form:

X° = (7 —A6)TV (7 —A8), Aij = aj(x;)
=gVl -2y v AG + TATV T AF
Set derivatives w.r.t. 6; to zero:
Vx? = —2(ATv 1y —ATv=146) =0
Solution:

6= (ATv1a) ATV Ty = 1y
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Linear least squares

Covariance matrix U of the parameters, from error propagation
(exact, because estimated parameter vector is linear function of data points y;)

U=LvL"
_ (ATV71A)71

Equivalently, calculate numerically

1| 9242

—1y X

W™ =3 [ae,-aej}ﬂ N
=0
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Example: straight line fit

y =0p+ 641x

Conditions 9x2 /96y = 0 and 9x2 /961 = 0 yield two linear equations with two
variables that are easy to solve.

With the shorthand notation

V4
ZUF

we finally obtain

Xyl + [yl

o — b1 — K] _ —bdbl+[1lby]
[1]0x2] = [x][x]

USRI

>
=

Simple, huh? At least, easy to program and compute, given a set of data
(Pl put the complete calculation for this in the appendix of the slides)

Tools for physicist
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Example: straight line fit

X
Data:

X y oy

1 1.7 05
2 23 038
3 35 04
4 33 04
5 43 06
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Analytic fit result:

o — Kl = Wby
(11x2] = [x][x]

- —XIyl + []xy]
[11[x2] = [x][x]

>

=1.16207

>

= 0.613945

Covariance matrix of (6g, 61):
U= ATv=14)~"

[ 0.211186 —0.0646035
~ | —0.0646035 0.0234105



Example: straight line fit

> O

[6)]

Data:
X y oy
1 1.7 05
2 23 038
3 35 04
4 33 04
5 43 06
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sl b b Lo Ly
R R S S S

L S B NN P

Numerical estimate with MINUIT:

Minimizer is Minuit / Migra

Chi2 = 2.29557
NDf 3
Edm 3.23988e-23
NCalls 32
po = 1.16207
pl = 0.613945
Covariance Matrix:

po pl
po 0.21119  -0.064603
pl -0.064603 0.02341
Correlation Matrix:

po pl
poO 1 -0.91879
pl -0.91879 1

+/-
+/-

0.45955
0.153005




Fitting binned data

Very popular application of least-squares fit: fit a model (curve) to binned data (a
histogram)

Number of events occurring in each bin j is assumed to follow Poisson
distribution with mean .

Further common simplification: ‘modified least-squares method’, assuming that

2 _ .
o =1y

Can get away with this when all n; are sufficiently large, but what about bins
with small contents, or even zero events?

= Frequently, bins with n; = 0 are simply excluded.

This throws away information, and will lead to biased results of your fit!
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Fitting binned data

Example: exponential distribution, 100 events

N N N N ESLELE e 2L L B B e

]

70
60

50 £ 3 3
40 F 4 40 F E
30 E 4 30 F E
20 F 31 20F E
10 4 10F 3
0y 2 4 6 0y 2 4 6
Chi2 Fit ML Fit
T T T E T T T E
7H 3 3
6| 3 3
s | 3 3
4 E E
3 3 3
2 3 3
1 3 3
0 E 3

Chi2 Fit ML Fit

Oser,
s://www.phas.ubc. ca/ oser/p509/Lec_09.pdf

Tou]sforpg/slclui Statistics ©| SoSe 2019 |

red: true distribution
black: fit

The more bins you have with
small statistics, the worse
the MLS fit becomes.

ML method gives more
reliable results in this case. If
you must use MLS, then at
least rebin your data, at the
loss of information.

G



https://www.phas.ubc.ca/~oser/p509/Lec_09.pdf

Discussion of fit methods

m Unbinned maximum likelihood fit

+

+ o+ o+

no need to bin data (make full use of information in data)

works naturally with multi-dimensional data

no Gaussian assumption

works with small statistics

no direct goodness-of-fit estimate

can be computationally expensive, especially with high statistics
visualisation of data and fit needs a bit of thought

m Least squares fit

Tools for physicists: Statistics | SoSezo19 | 74

fast, robust, easy

goodness of fit ‘free of charge’

can plot fit with data easily

works fine at high statistics (computationally cheap)
assumes Gaussian/Poissonian errors

(this breaks down if bin content too small)

suffers from curse of dimensionality

blind for features smaller than bin size



Practical estimation — verifying the validity of your fits

Want to demonstrate that
m your fit procedure gives, on average, the correct answer: no bias

m uncertainty quoted by your fit is an accurate measure for the statistical
spread in your measurement: correct error

Validation is particularly important for low-statistics fits
intrinsic ML bias proportional 1/n

Also important for problems with multi-dimensional observables:
mis-modelled correlations between observables can lead to bias
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Basic validation strategy

Simulation study

L

2.

Obtain (very) large sample of simulated events

Divide simulated events in O(100 — 1000) independent samples with the
same size as the problem under study

. Repeat fit procedure for each data-sized simulated sample

. Compare average value of fitted parameter values with generated value

m demonstrate (absence of) bias

. Compare spread in fitted parameter values with quoted parameter error

w demonstrate (in)correctness of error
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Practical example — validation study

Example fit model in 1D (B mass)

m signal component is Gaussian
centred at B mass

Events/ (0.001 GeV )
8

m background component is ARGUS
function (models phase space near 10
kinematic limit)

95

q(m; Nsig, Nbkg: Bsig: Pbkg) = NsigG(M; Psig) + NokgA (M Poikg)

Fit parameter under study: nggq

in 9 !
m result of simulation studly: % 32: + {' +
1000 experiments § st % % '}
with (ng") = 200, (nf5y) = 800 Y wf # f #
o f H
m distribution of nfj; 305 + +
20E 4 4
= ...looks good 10F- {:}%{v Y dis
L T T VRN MY M <1

#signal events ]G‘U
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Validation study — pull distribution

What about validity of the error

g e E
estimate? & 10l e 3
52} E ]
N . S @ E
m distribution of error from simulated 3 10of { + 3
. . e . 5] £ B
experiments is difficult to interpret o ¥ } i E
60 =
L T .
) . gen 20F + -
m don’t have equivalent of Ngig for et e E
16 18 20 22 24 26 !8
the error #signal events Error
Solution: look at pull distribution
m Definition:
Iy F T INiéan'=-0.0246'+ 0.030" i
fit _ ,gen g - S 045400 E
I _ nsig _nsig S b i
pull(nsig) = = g E
op 2w s
) 6o =
m Properties of pull: E ]
40— -
» Mean is O if no bias ok + E
» Width is 1 if error is correct F ]
et sat et ML - aa
#signal events Pull
JG|u
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Validation study — extended ML!

As an aside, ran this toy study also with standard (not extended) ML method:
Extended

Tools for phy

Events/ (35)

Events/(0.25)

% #
}

O%*fo™" 60180 200 220 240 260
#signal events
200" T R SO0 T
C pullSigma= 0.954 £ 0.021 |
1001~ E
80 E
60 4
o E
20 i
C: e L L L L L le
Ogeesgess 24 0 1 2 3Ty

#signal events Pull

o (pull) = 0.954 + 0.021
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Events/(35)

Events/ (0.25)

Standard

80
by ]
20 ki 3

E + Y 1
0 160 180 200 220

#signal events

1000% T A TV AR

C pullSigma= 0.100000 + 0.000051 ]

800 il
600 3
400 il
200 3

[ L L L L L L L
B S R b i} T2 4

#signal events Pull

o(pull) = 0.001

_
Q.
c



Validation study — low statistics example

Special care needs to be taken when fitting small data samples,
also if fitting small signal component in large sample

Possible causes of trouble

= x? estimators become approximate as Gaussian approximation of Poisson
statistics becomes inaccurate

= ML estimators may no longer be efficient
error estimate from 29 derivative inaccurate

m Bias term o 1/n may no longer be small compared to 1/+/n

In general, absence of bias, correctness of error cannot be assumed.
m Use unbinned ML fits wherever possible — more robust

n explicitly verify the validity of your fit
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Fit bias at low »

Low statistics example:

3
. o
= model as before, but with = P
5 16
<ng_en> =20 2 14
sig Z
g 10
84
6
4
Result of simulation studly: 2=
9.2 521 522 523 524 525 526 527 528 529 53
Mg (GeV)
§12 ﬂ 18 12 4 ] §12°itlll§§?;°f§;i°o‘$iL} ]
3 %% ﬂ sl Hy 7 o 1
§ 1005 % 4 = 100> % R ’S o 1
i) Z 2] E E i}
o ﬁ ER- . + H 60[- E
60- 1 ! 1% e E
@y £ I § i 9 T ]
a5 b 1 a ha 1 1
(PR ST SN 4 Lo Py
0 20 40 = 60 80 100 ‘15 10 15 20 25 g5 -4 -3 -2-10 1 2 3 4
#signal events #signal events Error #signal events Pull
Distributions become asymmetric at low statistics
fit is positively biased
JGlu
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Validation study — how to obtain 1 07 simulated events?

Practical issue: usually need very large amounts of simulated events for a fit
validation study

m Of order 1000x (number of events in data), easily > 106 events

m Using data generated through full (GEANT-based) detector simulation can
be prohibitively expensive

Solution: sample events directly from fit function
m Technique called toy Monte Carlo sampling
m Advantage: easy to do, very fast

m Good to determine fit bias due to low statistics, choice of parametrisation,
bounds on parameters, ...

m Cannot test assumptions built in to fit model:
absence of correlations between observables, ...
still need full simulation for this
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Summary of today’s lecture

m Powerful tool to estimate parameters of distributions:
Maximum likelihood method

= In the limit of large statistics, least squares method is equivalent to MLE

m Linear least squares: analytical solution!

m How to decide whether model is appropriate in the first place: next week!
goodness-of-fit, hypothesis testing, ...

m Whatever you use, validate your fit:
demonstrate absence of bias, correctness of error estimate
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CURVE-FITTING METHODS AND THE MESSAGES THEY SEND

Linear

Quadratic

LOGARITHMIC ~ ®
.

EXPONENTIAL  ®
.

.
"I WANTED A CURVED

.
"I'M SOPHISTICATED, NOT
LIKE THOSE BUMBLING

"I'M MAKING A
SCATTER PLOT BUT

"HEY! I DID A "LOOK, IT'S "LOOK, IT'S GROWING
REGRESSION." LINE, SO A MADE ONE TAPPERING OFF" UNCONTROLLABLY"
WITH MATH."
LOESS L Linear L SIGMOID e 95% Confidence ®
. No Slope Interval

.
"I NEEDED TO CONNECT
THESE TWO LINES."

"LISTEN, SCIENCE IS HARD
BUTI'M A SERIOUS PERSON

A

POLYNOMIAL PEOPLE." IDON'T WANT TO" DOING MY BEST."
PIECEWISE ® CONNECT Elephant House of Cards  ®
. . THE DOTS
Y e,

"NOW I JUST NEED TO
RENORMALIZE THE DATA."

.
"REGRESSION?! JUST USE
THE DEFAULT PLOTTING."

by Douglas Higinbotham in Python inspired by https://xkcd.com/2048

next week: how can we choose the ’best’ fit model?

"AND WITH FIVE
PARAMETERS I CAN MAKE
ITS TRUNK WIGGLE."

"AS YOU CAN SEE, THIS
MODEL SMOOTHLY FITS
THE --- NO NO WAIT DON'T
EXTEND IT AAAAAI"



Addendum: Linear least squares (I)

Fit model: y = 61x + 6y
Apply general solution developed for linear least squares fit:

Aij = aj(x) R
L=ATV 1A TATVT, d=Ly
1/(712
S R T T B DA 1/0%
X{ Xo o Xn )
1/%2
ATY—1 — 1/012 1/(722 1/0,?
x1/02  Xo/03 -+ Xn/0f
1 Xq
aryia (VR 1R /6 Ve | ni/e? mix/e?
x/0f xe/df - Xalog : Sixi/of  LixE/of
1 Xxp
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Addendum: Linear least squares (II)

2 x 2 matrix easy to invert. Using shorthand notation [z] = Y z/ (7,.2:

DR I B
(A'viA) [1][x2]—[xnx}<[x] 1] )

And therefore

L=(ATv A 1ATV !

_ 1 K2 =\ [ 1/ /0% - 1/0F
(1] = K]\ =] [1] X1/02 X3/0% -+ Xn/Of
i 1 i N 110}
_ 1 o7 o7 0?2 o2
(116 — i ( ol ;ﬂ:mgg)
And finally:

B = 1] — K]
(1] = Kb
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Best Linear Unbiased Estimate (BLUE)

Have seen how to combine uncorrelated measurements.
Now consider n data points y;, ¥ = (y1, - .., yn) With covariance matrix V.

Calculate weighted average A by minimising

Result:

Variance:
2 _ Ty Vorn,
o5 =w'Vw = ZW,\/,]VVI
i

This is the best linear unbiased estimator, i.e. the linar unbiased estimator with
the lowest variance
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BLUE

Special case: two correlated measurements

Consider two measurements y1, yo, with covariance matrix (p is correlation

coefficient)
V= (712 00102
00102 (722

Applying formulas from above:

1 —p
1 2 T A
vl = — fi ol A=wyi (1w
7\ = 2
_ (722 — P0102 .
02 + 02 — 2p0107

N

VIA] = 02 = 1= P2)oieE
0% + 02 — 2p010,

Tools for physicist
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Weighted average of correlated measurements:

interesting example

adapted from Cowan’s book and Scott Oser’s lecture:

Measure length of an object with two rulers. Both are calibrated to be accurate
at temperature T = Ty, but otherwise have a temperature dependency: true
length y is related to measured length L by

yi=Li+c(T—To)

Assume that we know c; and the (Gaussian) uncertainties. We measure L1, Lo,
and T, and want to combine the measurements to get the best estimate of the
true length.
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Weighted average of correlated measurements:
interesting example

Start by forming covariance matrix of the two measurements:

yi=Li+ci(T=To); 0? = of +c?o?

covly1,yo] = C1Co0%

Use the following parameter values, just for concreteness:

c1 =0.1 [1=2.0+0.1 yi =1.80+0.22 To =25
cr, =02 Lo =2.3+0.1 Vs> = 1.90 +0.41 T=23+2

With the formulas above, we obtain the following weighted average

y =1.75+0.19

Why doesn’t y lie between y¢ and y»? Weird!

Tools for physicists: Statistics | SoSezor9 | 9o



Weighted average of correlated measurements:

interesting example
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y1 and y» were calculated
assuming T = 23

Fit adjusts temperature and

finds best agreement at T = 22

Temperature is a nuisance
parameter in this case

Here, data themselves provide
information about nuisance
parameter
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Confidence intervals



In 2006: Miop = 174.3 + 5.1 GeV/c?

What does this mean?

m 68% of top quarks have masses between 169.2 and 179.4 GeV/c?
WRONG: all top quarks have same mass!
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In 2006: Miop = 174.3 + 5.1 GeV/c?

What does this mean?

m 68% of top quarks have masses between 169.2 and 179.4 GeV/c?
WRONG: all top quarks have same mass!

= The probability of My being in the range 169.2 — 179.4 GeV/c? is 68%

WRONG: Mo, is what it is, it is either in or outside this range. P is 0 or 1.
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In 2006: Miop = 174.3 + 5.1 GeV/c?

What does this mean?

m 68% of top quarks have masses between 169.2 and 179.4 GeV/c?
WRONG: all top quarks have same mass!

= The probability of My being in the range 169.2 — 179.4 GeV/c? is 68%
WRONG: Mo, is what it is, it is either in or outside this range. P is 0 or 1.

m Miop has been measured to be 174.3 GeV/ ¢? using a technique which has

a 68% probability of being within 5.1 GeV/c? of the true result
RIGHT
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In 2006: Miop = 174.3 + 5.1 GeV/c?

What does this mean?

m 68% of top quarks have masses between 169.2 and 179.4 GeV/c?
WRONG: all top quarks have same mass!

= The probability of My being in the range 169.2 — 179.4 GeV/c? is 68%
WRONG: Mo, is what it is, it is either in or outside this range. P is 0 or 1.

m Miop has been measured to be 174.3 GeV/ ¢? using a technique which has
a 68% probability of being within 5.1 GeV/c? of the true result
RIGHT
if we repeated the measurement many times, we would obtain many
different intervals; they would bracket the true My in 68% of all cases
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Point estimates, limits

Often reported: point estimate and its standard deviation, 6 + 0p-

In some situations, an interval is reported instead, e.g. when
p.d.f. of the estimator is non-Gaussian, or
there are physical boundaries on the possible values of the parameter

Goals:

m communicate as objectively as possible the result of the experiment

m provide an interval that is constructed to cover the true value of the
parameter with a specified probability

m provide information needed to draw conclusions about the parameter or to
make a particular decision

m draw conclusions about parameter that incorporate stated prior beliefs

With sufficiently large data sample, point estimate and standard deviation
essentially satisfy all these goals.
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Choices, choices!

We can choose:

m The confidence level
two-sided confidence intervals: typically 68%, corresponding to +1¢
upper (or lower) limits: frequently 90%, but 95% not uncommon ...

m Whether to quote an upper limit or a two-sided confidence interval

m What sort of two-sided limit
central (i.e. symmetric), shortest, ...

Important: document what you are doing!
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Constrained parameters

Measure a mass Counting experiment

Expect 2.8 background events

See 0 events; so, 90% CL upper limit is
2.3 events

S0, signal < —0.5 events

My = —5+2GeV 777

My = —2 +5GeV

or even

‘My lies between —7 and —3’ with 68%
confidence
77?7
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What’s happened?

Two views:

Nothing has gone wrong

(Up to) 10% of our 90% CL
statements can be wrong; this is
just one of them

Publish this, to avoid bias!
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Everything wrong!

There are physical constraints
(masses are non-negative, so are
cross sections!)

No way to input this into the
statistical apparatus

We will not publish results that are
manifestly wrong

This is broken and needs fixing

_
Q.
c



What should be done with ‘unphysical’ results?

Best, but mostly not possible: publish full likelihood (or log-likelihood) function.

This allows optimal combination of results, but is rarely done.

Preferred solution: publish both solutions,
i.e. the ‘raw’, maybe nonsensical two-sided confidence interval,
and one-sided C.I. taking extra constraints into account

May have to fight against (internal and external) referees who insist that

publishing a two-sided confidence interval is equivalent to claiming
“observation”
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Estimation of confidence intervals

Typically, use fit to determine event yields or parameters of a distribution

Least square fit (for binned datasets) or maximum likelihood fits (can also deal
with unbinned data)

Error definition, for one degree of freedom:
LSQ : 1o confidence interval from S = Sy, + 1

ML : 1o confidence interval from log £ = log Lmax — &
no conf. intervals from 2A log £ = n?

See today’s practical part what happens for joint confidence region for v
parameters
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Construction of frequentist confidence intervals
Neyman construction of ‘confidence belts’:

for a given value of parameter 0, find interval of possible measured values x
such that [x1, xo] is a CL confidence interval:

X 2,(8), 8,(x)

parameter 6
<
D
=
5

1(90) %5(8g)

Possible experimental values x

then, for given experimental outcome xg, read off vertically range of parameter 6.

Has all nice properties one would like to have: in particular coverage

o O8N, DE pre-computed, e.g. for counting statistics (Poisson)

—



Bayesian credible intervals

Bayesian approach: report full posterior p.d.f.
If a range is desired: integrate posterior p.d.f. p(6]x)

1—a= /:upp(9|x)d9
lo

e.g. 1 —a = 0.9: “90% credible interval”
Several choices possible to construct 6, Oup]:

m [—o9; 6] and [Byp; oo] both correspond to probability /2

m Symmetric interval around maximum value of p, corresponding to

probability 1 — a
= p(6|x) higher than any 6 not belonging to the set
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Hypothesis tests
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Hypotheses and tests

= Hypothesis test

» Goal: draw conclusions from the data
» Statement about validity of a model
» Decide which of two competing models is more consistent with data

m Simple hypothesis: no free parameters

» Examples: particle is a 7t; data follow Poissonian with mean 5
m Composite hypothesis: contains free parameters
= Null hypothesis Hp and alternative hypothesis H4

» Hp often the background-only hypothesis
(e.g. Standard Model only; no additional resonance; ...)
» H; often signal or signal+background hypothesis

m Question: can Hy be rejected by data?

m Test statistic t: (scalar) variable that is a function of the data alone, that can
be used to test hypothesis
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Critical region
Reject null hypothesis if value of ¢ lies in critical region: t > tqut

S0 I f(t|Ho) Adjust cut so that probability to be in
critical region is low if Ho is true and high
if H1 is true

critical region Ideal test: a and B small:
Low chance a of incorrectly claiming a

f(t|H1) new discovery, small chance 8 of missing

an important discovery
Bl

Leut

> test statistic

Probability for Hp to be rejected o w: “size” or significance
while Hg is true: f(t|Ho)dt = level of test

cut
Probability for Hy to be rejected ;

out 1 — B: power of the test
even though it is true: / f(t|Hq)dt = B i power

J6lu
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Type I and Type Il errors

Statistics jargon, getting more and more common also in HEP

Type | error: Probability of rejecting null hypothesis Hy when it is actually true
also known as false discovery rate

Type Il error: Probability to fail to reject null hypothesis Hg while it is actually false
also known as false exclusion rate
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p-value

p-value: probability to observe data set that is as consistent or worse with null
hypothesis as the actual observation

test statistic: go

pdf for go under Ho: f(qo|0)

fla |0) critical region: large values of qg

| q., Qo,0bs: Observed value in data

Po = / f(g0|0)dao
4o,0bs

pdf for go under Hy frequently needs to be estimated with simulation
p-value is a random variable (contrast: significance level « fixed before
measurement).

if po < a: reject Hg

1 — po: confidence level of test
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p-value and significance

J,I % obe

= Z x
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if pg < «, then reject null hypothesis
Frequent convention in HEP:

for discovery, require p < 2.87 x 10~/
for exclusion, require p < 0.05

translate p-value to significance Z via
Standard Normal pdf

Significance of 5 (1.64) s.d.
corresponds to p = 2.87 x 10~(0.05)

JGlu
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p-VAWE  INTERPRETATION

0.001 7]
0.0l
0.02 —HIGHLY SIGNIFICANT
0.03 _|
0.04 ]

0.049 L— SIGNIFICANT

= T— OHCRAP REDO
0.050_}— cALCOLATIONSS,
0051 | PN THE EDGE
006 OF SIGNIFICANCE.
007 | HiGHLY SUGGESTIVE,

0.08 SIGNIFICANT AT THE-
0.09 P<O.10 LEVEL

00771 HeY, LOOK AT
>(.] J—THIS INTERESTING
SUBGROUP ANALY5I5
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CURVE-FITTING METHODS AND THE MESSAGES THEY SEND

Linear

Quadratic

LOGARITHMIC ~ ®
.

EXPONENTIAL  ®
.

.
"I WANTED A CURVED

.
"I'M SOPHISTICATED, NOT
LIKE THOSE BUMBLING

"I'M MAKING A
SCATTER PLOT BUT

"HEY! I DID A "LOOK, IT'S "LOOK, IT'S GROWING
REGRESSION." LINE, SO A MADE ONE TAPPERING OFF" UNCONTROLLABLY"
WITH MATH."
LOESS L Linear L SIGMOID e 95% Confidence ®
. No Slope Interval

.
"I NEEDED TO CONNECT
THESE TWO LINES."

"LISTEN, SCIENCE IS HARD
BUTI'M A SERIOUS PERSON

A

POLYNOMIAL PEOPLE." IDON'T WANT TO" DOING MY BEST."
PIECEWISE ® CONNECT Elephant House of Cards  ®
. . THE DOTS
Y e,

"NOW I JUST NEED TO
RENORMALIZE THE DATA."

.
"REGRESSION?! JUST USE
THE DEFAULT PLOTTING."

by Douglas Higinbotham in Python inspired by https://xkcd.com/2048

how can we objectively tell which model fits better?

"AND WITH FIVE
PARAMETERS I CAN MAKE
ITS TRUNK WIGGLE."

"AS YOU CAN SEE, THIS
MODEL SMOOTHLY FITS
THE --- NO NO WAIT DON'T
EXTEND IT AAAAAI"



Least squares: Goodness-of-fit

Minimum value of S in the least squares method is a measure of agreement
between model and data:

i=1

oy 2
Srmin = Z <yi - ir(,-Xi;e)>

Large value of Syyin: can reject model.

If model is correct, then Sy, for repeated experiments follows a Xz distribution
with ngs degrees of freedom:

tndf/271
oNngt/ 2T ( % )

—t/2

f(t;ndf) = e ) t= sznin

with ngs = n —m = number of data points — number of fit parameters
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Least squares: Goodness-of-fit

Expectation value of x2 distribution is ngs
= y2 =~ ng indicates good fit

Consistency of a model with data is quantified with the p-value:

+o00
p = /f(t;ndf)dt

Smin

p-value: probability to get a xﬁm at least as high as the observed one, if the
model is correct.

p-value is not the probability that the model is correct!
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p-value for the straight line fit example

>

Smin = 2.29557, ngs = 3
p-value: prob(Smin, Ngf) = 0.51337011

T

o

o <

o]
T T
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p-value for the straight line fit example
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Smin = 2.29557, Ngf = 3
p-value = 0.5134

0o =1.164+0.46
61 =0.614+0.153

Smin = 183964, Ngf = 4
p-value = 0.00103

Oy = 2.856 4+ 0.181

Stat. uncertainty on fit parameter
does not tell us whether model is
correct



Goodness of fit for unbinned ML fits

In the case of unbinned ML fit, can bin data and model prediction into
histogram and then perform x? test
Consider the likelihood ratio

)

S
<

(1i[v)
(An)”

For multinomially (“M”, nyt fixed) and Poisson distributed data (“P”), one obtains
for k bins

A= v =7()

)
S
il

!

k " n; k v n;
_ ! _ AMot—V |
w=T1(5) - we=e I ()
1

Now consider test statistic
= —2logA
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Goodness of fit for unbinned ML fits

For multinomially distributed data, in the large sample limit
k n
tw = —2log Ay =2) njlog ;’
i=1 i

follows x? distribution for k —m — 1 degrees of freedom.

For Poisson distributed data,
K n;
tp = —2logAp=2) <n, log ;’ + 7 —n,-)
i=1 i
follows x? distribution for k — m degrees of freedom.

Note: always remember to quote Xz and nys separately, instead of just the
‘reduced x2/ng; — there is a difference!

prob(15,10) = 0.132
prob(1500, 1000) = 1.05 x 10722
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Profile likelihood ratio:

hypothesis tests with nuisance parameters

Base significance test on the profile likelihood

L(u, é) _ maximised L for specified p
£(p,0)  dlobally maximised £

Alu) =

Likelihood ratio of point hypotheses gives optimum test
(Neyman-Pearson lemma).

Composite hypothesis: parameter y is only fixed under Hg, but not under H;.

Wilks’ theorem:
Qo = —2logA

asymptotically approaches chi-square distribution for k degrees of freedom,
where k is the difference in dimensionality of Hy and Hg
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Profile likelihood ratio

Example: B mass fit from last time; 40 signal events, 1000 background events
‘ ‘ . 3 parameters in the fit: signal and

s 250
& b background yields, shape
S 20
S parameter for background
3 15
5 R
@ 0] nsig =47+12

5 ﬁbkg =992 £33

L Il Ly L L L ‘
g, 521 522 523 524 525 526 527 528 529 3
Mes (Gev) )

9 uf T scan of L(ngg, 8) with nuisance
3w E parameters fixed to values from
e E global minimum
PR - A Al . A
£ E profile likelihood: £(ngg; 0)
8 f E
S 4F
&

2 =

y 10 20 30 40 50 60 7‘0 éo

#signal events
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Profile likelihood ratio

Example: B mass fit from last time; 40 signal events, 1000 background events
3 parameters in the fit: signal and

%\ 25] .|
9 ] background yields, shape
20 A
g parameter for background
3 15 =
5 1
i 10 - ﬁsig =47 +12
o T Pokg = 992+ 33
E; 5.‘21 5.‘22 5.‘2‘5} 5,‘24 5,5?) 5,‘26 5.‘27 5.‘28 "‘ 3
mgg (GeV) . . .
g uF rrrr From scan of profile likelihood:
5 1 E 2Alog L =17.94
5 o E
’;% o = And therefore p-value for Hy:
g« ] 1.183927 x 1079, or significance for
2 7
E ] Nsig # 0
10 20 30 40 50 60 70 80

#signal events

Z =+/2Alog L = 4.20
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Profile likelihood ratio

Example: B mass fit from last time; 40 signal events, 1000 background events

25

20|

15

Events/ (0.001 GeV )

o

10f

vo

14

1

o ©

Projection of -log(likelihood)
>

a

N

L L | | L L ) i)
521 522 523 524 525 526 527 528 529 53
Me (GeV)

i 1
10 20 30 40 5 60 70 80
#signal events
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3 parameters in the fit: signal and
background yields, shape
parameter for background

Pg = 47 + 12
Apkg = 992 + 33

now leave also mean and width of
signal peak free in fit: two additional
nuisance parameters (that cannot
really be determined when

nsig = O)

p-value = 0.0697557
Z=148¢
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Look-elsewhere effect

I —
A Swedish study in 1992 tried to determine whether or not power lines caused
some kind of poor health effects. The researchers surveyed everyone living
within 300 meters of high-voltage power lines over a 25-year period and looked
for statistically significant increases in rates of over 800 ailments. The study
found that the incidence of childhood leukemia was four times higher among
those that lived closest to the power lines, and it spurred calls to action by the
Swedish government. The problem with the conclusion, however, was that they
failed to compensate for the look-elsewhere effect; in any collection of 800
random samples, it is likely that at least one will be at least 3 standard
deviations above the expected value, by chance alone. Subsequent studies
failed to show any links between power lines and childhood leukemia, neither in
causation nor even in correlation.

https://en.wikipedia.org/wiki/Look-elsewhere_effect
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Look-elsewhere effect

In general, a p-value of 1/n is likely to occur after n tests.

Solution: apply ‘trials penalty’, or ‘trials factor’, i.e. make threshold more
stringent for large n.

Not entirely trivial to choose trials factor: need to count effective number of
‘independent’ regions.

Suppose you look at a range of invariant masses large compared to the mass
resolution, then N ~ AM /op.

See e.g. Gross & Vitells, arXiv:1005.1891 [physics.data-an] for a recipe
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Look-elsewhere effect

Can make substantial change to claimed significance:

for example ATLAS observation of
an enhancement around 750 GeV
in vy invariant mass:

Local significance 3.9¢,
corresponding to a p-value of
p =96 x 1075,

i.e. roughly 1:10000

Global significance only 2.1¢,
corresponding to a p-value of
p = 0.0357,

i.e. roughly 1:28
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Events / 20 GeV

Data - fitted background
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ATLAS, JHEP 09 (2016) 001
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(Final) digression: p-value debate

In many fields (esp. social sciences, psychology, etc.), significant means
p < 0.05

Relatively weak statistical standard, but often not realised as such!

We’ve seen that getting p < 0.05 isn’t that rare, especially if you run many
experiments!

May be a contributing factor to the ‘reproducibility crisis’
and may be exacerbated by p-value hacking
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50 for discovery in particle physics?
50 corresponds to p-value of 2.87 x 10~/ (one-sided test)

m History: many cases where 3¢ and 4 effects have disappeared with more
data

m Look-elsewhere effect

m Systematics: often difficult to quantify / estimate
m Subconscious Bayes factor:

» physicists tend to (subconsciously) assess Bayesian probabilities p(H+|data)
and p(Hp|data)

» If Hy involves something very unexpected (e.g. superluminal neutrinos), then
prior probability for Hy is much larger than for H4

» Extraordinary claims require extraordinary evidence

May be unreasonable to have single criterion for all experiments
Louis Lyons, Statistical issues in searches for new physics, arXiv:1409.1903
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p-value hacking

http://xkcd.com/822

JELLY BEANS WE FOUNDNO
CAUSE ACNE! LINK GETVEEN
SCENTISTS! JeLLy BEANS AND
INVESTIGATE! AQNE (P> 0.05),
T ke
P teger

2R

THAT SEMLES THAT.
THEAR IT5 ONLY
CERTAN
THAT CAUSES IT.
scmsrs\ /

mu.»gwfv‘

@k

To ACNE!
957 ConfIDENGE '

CREEN JELLY
BEANS LINKED
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WE FOUNDNO WE ROUNONO | | WE FONONO WE FUNDNO WE FOUNDNO
LINK BEIWEEN LINK BETWEEN LINK BEWWEEN LINK BEIWEEN LINK BEIWEEN
Tewr BROWN JELY | | prec Ly BWE Ty Feuy

(P>0.03). (P>005). (P>005), (P>005). (P>005).
/ / / / /

WE FOUNONO VE FOUNONO WE FOUNDNO WE FOUNDNO

LNKGEWEEN | | N BEIJEEN UNK BEWEEN | | LINK BEVEEN LINK GEVEEN

SALMON JELy | | ReD Jewr TURGVOISE JELLY | | MAGENTR JEwy | | YELLOW JEuy

<P>0los) (P>°)05) (P>o,os) (P>°’DS) (P>005).
/

WE FOUNDNO WE FOUNONO VE FOUNONO WE FOUND A WE FOUNONO

UNKGEVEEN | | LNK BEIVEEN LNKGIVEEN | | LNK GEVEEN LINK GEVEEN

GREY JEUY TAN JEuY CraN ey GREEN JeLY MAVE JeuY

(p>005). (P>005) (P>005). (p<oos) (P>005).
/ / / /

.UMM/

WE FOUNDNO WE FONONO VE FOUNONO WE FOUNONO WE FOUNDNO

UNKBEWEEN | | UNK GETVEEN UNKBEWEEN | | LINK BEIVEEN LINK GEVEEN

BEIGE JELY UtAC JEuy BACK JEuy PEACH JEUY ORANGE TELY

(P>005). (P>005). (P>005). (P>005). (P>005).
/ / / / /
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