
Tools for Physicists: Boost your Analysis
with High Performance Computing (HPC)

Hands on Trivial Parallelisation, Peter-Bernd Otte, 2.5.2019

Lecture Today

• Course webpage: https://indico.him.uni-mainz.de/event/35/

• Part of “Tools for Physicists” series:
https://www.hi-mainz.de/tfp19

Talk (40´)

• Motivation for High Performance Computing (HPC)

• Cluster building blocks and our HIMster2
• Trivial Parallelisation

Hands on (60´)

https://indico.him.uni-mainz.de/event/35/
https://www.hi-mainz.de/tfp19

Trivial Parallelisation

• todays course covers only trivial parallelisation and skips theory
à see lecture next semester “Parallel Programming with OpenMP and MPI”

• Basic principle: run your existing analysis N times in parallel

à How do we get there?

Worked out example

building of a house

• 1 worker = 1 year
• 3 workers = 4 months

• 9 workers = ?

à Scaling?

Running in parallel

Your analysis consists of 100 files to analyse

• On your desktop computer:
$./myAnalysisExec InputFile1.dat OutputFile1.dat

• 8 cores:
./myAnalysisExec InputFile1.dat OutputFile1.dat &
./myAnalysisExec InputFile2.dat OutputFile2.dat &, etc.

à Your room mate has a computer, too, so why no use it?

HPC out of distributed desktop computers?
• FLOPS / computer (floating-point operation per second):

• FLOPS = f × Ncores × Ninstr per cycle
• Intel E5-2670 (2,6 GHz, 8 cores): 2,6GHz × 8 × 8 = 166,4 GFLOPS

• Ncomputers: 200 (=25 offices / floor, 4 floors, 2 people / office, 1 computer / person)
• 33TFLOPS cluster “for free” ó Clover = 106TFLOPS, HIMster2/Mogon2: 2801TFLOPS

Drawbacks:
• OS: Windows (20%), MacOS (20%), Linux (50%) other (10%) – all on a different version level
• Temperature in office rooms, closed window, 15th July: 0W = 29°C, with 400W = 50°C

(simulated with: www.thesim.at)
• Network: 1GBit/s, Backbone 10GBit/s (HIMster2: 100GBit/s)

• 10GBit/s / 200 computers / 8 cores = 780kByte/s
• Compare bisection bandwidth (minimal accumulated bandwidth between any bisections of the

network): fat tree ó binary tree

• Storage?
• No node checks, difficult to maintain, reduced availability

bisection bandwidth

http://www.thesim.at/

Why High Performance
Computing (HPC)?

Why HPC?

• Intense computational problem à single desktop computer not capable enough

• Run on a “super computer“
1. <2002: fast single core super computer
2. Since 2002: parallel systems as super computers

à Why parallel systems?

The Era of
Moore’s Law
• 1900-2000

• source: Wikipedia

The Era of Moore‘s Law

• Moore's law (1965) =
observation number
of transistors in a IC doubles
every ~2a.
• Still valid, no natural law.

Cramming More Components onto IC (1965):
ftp://download.intel.com/sites/channel/museum/Moores_Law/Articles-
Press_Releases/Gordon_Moore_1965_Article.pdf or

https://ieeexplore.ieee.org/document/658762?tp=&arnumber=658762

Source: wikipedia

ftp://download.intel.com/sites/channel/museum/Moores_Law/Articles-Press_Releases/Gordon_Moore_1965_Article.pdf

Single-Core Performance

The single core-
performance increased by

• <2002: 50%/a

• >2002: 20%/a

Speedup after 10a:

• <2002: ~6000%

• >2002: ~600%

Simply wait for the next
CPU release is not enough
any longer.

“Dennard scaling”:
power density in silicon
remains constant as gate
size shrinks (speculative).

Smaler --> less
power/gate à higher f

Why not increasing frequency?

• Core speeds topped out at 2-4 GHz
• World record standard CPU: 8722.78 MHz with liquid nitrogen cooling

(http://hwbot.org/benchmark/cpu_frequency/)

• Problem #1: cooling the chip

• Finding: “Dennard scaling” (constant power density) no longer valid
• No longer (since 2000’s) true since 90nm gate sizes (leakage current!)
• The two things that consume energy (CMOS gate):

1. switching state (1 ó 0) (10µW/MHz, prop with f^1.75)
2. leakage current (10nW / CMOS-Gate, anti-prop with Vdd and gate size)

• Increasing f: increase in power on same area
à compensate this: shrinking gate sizes and lower Vdd
• But: smaller gates have higher leakage current. à New innovations needed.

à multi-cores at fixed f to gain performance

not gate

Power=P(Vdd, f)

Answer: multicores

perf. = f * instr./clock
power = perf^1.75 + const.

Moore‘s Law scaling with cores

little
core

big core
little
core little

core

little
core

little
core

little
core

little
core

little
core

little
core

little
core

little
core

little
core

little
core

little
core

little
core

little
core

little
core

little
core

little
core

little
core

little
core

< 2002 > 2002

With „Dennard Scaling” Without „Dennard Scaling”

Recap: Trivial Parallelisation and Multicore
systems
• No drawback using a multi core machine
• We have single independent jobs

• Assign single analysis runs to single cores

à We are on the right path, so let’s dive in.

little
core

little
core

little
core

little
core

Input file 1

Input file 2

Input file 3

Input file 4

HPC building blocks

What is High Performance Computing (HPC)

• Basic building blocks are:
1. compute nodes (~1000)
2. fast interconnect (1x)
3. parallel file system (1x)

• Usage remotely, non interactively

node node node node

FS

Anatomy of a node

• cache coherent Non-Uniform Memory Access (ccNUMA, AMD: 2003, industry wide: 2011)

• ccNUMA uses inter-processor communication between cache controllers

Core 0 Core 1

L1 16k L1

L2 2M L2

L3 8M

Core 0 Core 1

L1 16k L1

L2 2M L2

L3 8M

Cache
coherence

System Memory 256 GB

NUMA node NUMA node

• Output of hwloc tool: Topology of a ccNUMA Bulldozer server, 2 socket system

Anatomy of a cluster computer

• N * ccNUMA = cluster:

• Fast lossless interconnect: OmniPath between ccNUMA nodes
• Inside a node: NUMA, ccNUMA
• Multiple nodes: Distributed memory parallelisation (DMP)

Core 0 Core 1
L1 16k L1
L2 2M L2

L3 8M

Core 0 Core 1
L1 16k L1
L2 2M L2

L3 8M

System Memory 256 GB

Core 0 Core 1
L1 16k L1
L2 2M L2

L3 8M

Core 0 Core 1
L1 16k L1
L2 2M L2

L3 8M

System Memory 256 GB

Core 0 Core 1
L1 16k L1
L2 2M L2

L3 8M

Core 0 Core 1
L1 16k L1
L2 2M L2

L3 8M

System Memory 256 GB

Node interconnect

Anatomy of a cluster computer

• Latencies:

(all numbers are platform dependent)

Core 0 Core 1
L1 16k L1
L2 2M L2

L3 8M

Core 0 Core 1
L1 16k L1
L2 2M L2

L3 8M

System Memory 256 GB

Node interconnect

Core 0 Core 1
L1 16k L1
L2 2M L2

L3 8M

Core 0 Core 1
L1 16k L1
L2 2M L2

L3 8M

System Memory 256 GB

Core 0 Core 1
L1 16k L1
L2 2M L2

L3 8M

Core 0 Core 1
L1 16k L1
L2 2M L2

L3 8M

System Memory 256 GB

Operation min overhead in
cycles

Hit L1 cache 1-10

Miss all caches 100

Page miss 100.000

(Data via
interconnect)

1000 (1µs)HDD

HIMster II Specs

• 320 Compute Nodes (256 theory, 64 experiment) in 8 racks
• dual socket Intel 6130 @ 2.1GHz (à 16 cores)
• 3GB RAM /core
• OmniPath 100 Gbit/s interconnect
• 400 GB local SSD scratch
• https://mogonwiki.zdv.uni-mainz.de/dokuwiki/nodes

• Parallel File System: 747TB Lustre volume
• Software

1. organized in modules
• eg: module avail; module module load lang/Python/3.6.6-foss-2018b
• See: https://mogonwiki.zdv.uni-mainz.de/dokuwiki/setting_up_environment_modules

2. More via nfs mount: /cluster

HIMster II

• HIMster II, Mogon Iia and Mogon IIb form a compound state
• share login nodes, maintenance servers
• interconnect: OmniPath (100GBit/s)

• situated in the institute’s basement computing room, 660kW
• 2PFlops Linpack (20% contributes HIMster II)
• although calculation on complete cluster is possible, use HIMster II
• account registration via PI of HIM or it@him.uni-mainz.de.

University of Mainz account is mandatory (à HIM Admin will contact you).
• ssh pbotte@miil01-miil04 (only ssh-key login possible, login Mogon I first via password)

• https://mogonwiki.zdv.uni-mainz.de/dokuwiki/access
• home directory: Shared with Mogon I, quota 300 GB
• More info: https://mogonwiki.zdv.uni-mainz.de/dokuwiki/ssh_from_outside
• Rules apply: https://www.en-zdv.uni-mainz.de/regulations-for-use-of-the-data- center/

mailto:it@him.uni-mainz.de
https://mogonwiki.zdv.uni-mainz.de/dokuwiki/access

HIMster II: Info and do’s

• Per core memory bandwidth: Clover, HIMster II = 5.6 GByte/sec
• HIMsterII has Skylake CPUs (eg AVX512 avail.)
• Storage / Parallel File system:

• NO BACKUP of data
• Try to use large files: Source code should be in /home/
• Try not to put too many files into one directory (less than 1k)
• Try to avoid too much metadata load:

• DO NOT DO ls –l unless you really need it
• In your scripts avoid excessive tests of file existence (put in a sleep statement between two

tests say 30 secs)
• Use lfs find rather than GNU tools like find
• Use O_RDONLY | O_NOATIME (readonly and no update of access time)

Batch System: SLURM
• Batch system, introduces fair share

• Accounts (e.g. m2_himkurs, m2_himexp, etc.)
• Queues
• Reservations

• Introduction and docu:
• https://mogonwiki.zdv.uni-mainz.de/dokuwiki/slurm_submit
• https://slurm.schedmd.com/tutorials.html

• Today:
• account to use: m2_himkurs
• Reservation: himkurs
• Submit into partition: parallel

• srun --pty -p parallel -A m2_himkurs --reservation himkurs bash -i

• Check what is running: squeue -h | grep pbotte
• 1184615_79 parallel N203r001 pbotte R 1:00:40 52 z[0367-0386,0403-0413,0430-0450]
• SSH login into your occupied nodes possible: eg ssh z0367

• only for debugging, do not launch analysis tasks!

Batch System: SLURM

• Submit script for later execution (batch mode)
• sbatch --partition=himster2_exp

• Create job allocation and start a shell to use it (interactive mode)
• salloc -p himster2_exp -N 1 --time=02:00:00 -A m2_him_exp

• srun: Create a job allocation (if needed) and launch a job step (typically MPI job)
• srun --pty -p himster2_exp -N 1 --time=02:00:00 -A m2_him_exp
bash -i

• sattach: Connect stdin/out/err for an existing job

Examples only – not fortoday‘s hands on!

Sample Submit Script

1. Define and reserve
resources (nodes with
RAM)

2. Once allocated, run the
executables as defined
or interactively

More examples
https://mogonwiki.zdv.uni-
mainz.de/dokuwiki/slurm_su
bmit

#!/bin/bash
#SBATCH -o /home/pbotte/test/myjob.%j.%N.out
#SBATCH -D /home/pbotte/test/
#SBATCH -J MyJobName
#SBATCH -A m2_him_exp ß account (NOT your account)
#SBATCH -N 1 ß Request number of nodes
#SBATCH --partition=himster2_exp ß partition
#SBATCH --mem-per-cpu=1G
#SBATCH --mail-type=FAIL
#SBATCH --mail-user=pbotte@uni-mainz.de
#SBATCH --time=8:00:00 ß wall time (>run time)

module load gcc/6.3.0
echo TEST...
srun myExecutable

Submit with: sbatch submitScript.sh

Examples only – not fortoday‘s hands on!

https://mogonwiki.zdv.uni-mainz.de/dokuwiki/slurm_submit

HIMster compute nodes
8 racks

Cooling power
for up to 750kW

Power and OmniPath Interconnect

Optimisation and usage

Examples only – not fortoday‘s hands on!

Amdahl’s Law

• Given a program consisting of a non-parallelisable
and a perfectly parallelisable part

• Fraction s of the non-parallelisable part:
T(p)=Tseq + Tpar(p) = T(1) * s + T(1) * (1-s)/p

• Speed-up: S(p) = (1+(1-s)/p)-1

• p à inf: S(p) = 1/s
• If S(p) > 1/s à “super-scaler speedup”, problem fit’s into

CPU cache.

ideal (s=1)

Order of optimisation
How to speed up your existing analysis:
• Apply trivial parallelisation (todays topic!)

Want to go further?
à Identify bottlenecks (and only optimise them)

1. Optimise algorithm
2. Write algorithm on single core
3. Expand code to multicore, single node with OpenMP
4. Expand to multi node with MPI
5. Optimise multi node system

à Not covered today, lecture in winter semester.

Parallel Programms: Worked out example

• Task: calculate sum of numbers distributed over N cores

• 6,8,9 3,5,8 9,1,2 2,3,4
core 0 core 1 core 2 core 3
• local sums: 23 16 12 9

• collection: 39 21

• final sum: 50
Always check the scaling of your program: O(N), O(N2), O(log(N))?

time

Trivial vs full usage of HPC

• Trivial parallelisation:
• Run your analysis several times (with different parameters)
• Out of the box with any non-interactively linux program
• Outcome / speedup unclear, but works very good for 10-100 jobs in parallel

Mainly disc access is limiting.

• Full usage (not covered today):
• No automated process to convert a single-core to a multi-core program
• Write parallel code or use existing.

Preparing Hands on…

Today’s Setup

• https://indico.him.uni-mainz.de/event/35

• Linux basics used:
• Bash: launch a program with different parameters
• SSH: generate a key and log into HIMster2
• modules: list and load different modules
• (versioning with git)

• Work in groups of 2 on a single computer.

• If not present, familiarise with it OR find the right team mate!

Public-key cryptography

• Asymmetric Encryption

• connecting to Himster2:
1. run “ssh-keygen” if you have no keys yet

• Private key: ~/.ssh/id_rsa
• Public key: ~/.ssh/id_rsa.pub

2. ssh-copy-id them to mogon1
• See: https://mogonwiki.zdv.uni-mainz.de/dokuwiki/access

3. ssh into mogon2 / HIMster2

Alice
0110101010
1101110100
0011011010

Large
Random
Number

Key
Generation
Program

Public Private

Hello
Alice!

Alice's
private key

Encrypt

6EB69570
08E03CE4

Hello
Alice!

Decrypt

Alice's
public key

Alice

Bob

Pictures from wikipedia

https://mogonwiki.zdv.uni-mainz.de/dokuwiki/access

Trivial Parallelisation (1)
• Submit a single core job multiple times
• Quick and often only solution for large software blobs (large packages used in collaborations)

• No principal difference compared to running on your desktop computer

• limits:
• required RAM (3GB/core)
• licensees (Mathematica, max 10 concurrent usages in university for such uses cases)
• shared scratch (under “/localscratch”) in node (200GB)
• parallel filesystem (loading at start, writing back results) max. à 10-100 jobs in parallel

• Hint: use job arrays
• https://mogonwiki.zdv.uni-mainz.de/dokuwiki/job_arrays

• Disadvantage (for single and array jobs):
• No control over speedup (this is gambling)
• Node health check (~1min) and batch system overhead (~1min) for every step

à bundle them to larger blocks à use a workload manager!

https://mogonwiki.zdv.uni-mainz.de/dokuwiki/job_arrays

Trivial Parallelisation (2): Workload Manager
Helper MPI-Script
https://gitlab.rlp.net/pbotte/workload-manager
• Occupy Ncores cores on |Ncores/20| (HIMster 2: |Ncores/32|)

different machines simultaneously
• Provide a directory with files to process (Nfiles)
• Controlling instance on core 0
• Starts your analysis executable on workers (cores 1..N-1)
• Feedback or pull requests welcome

Advantages:
• Suits short and long running analysis (avoid node health

checks)
• Does load distribution
• Takes care of in and output files

Core 0
(Master)

Core 1 Core 2 Core 3

List of files to
process

https://gitlab.rlp.net/pbotte/workload-manager

Hint: Reservation for this problem class
$ scontrol show reservation

ReservationName=himkurs StartTime=2019-05-02T08:00:00 EndTime=2019-05-02T18:00:00 Duration=10:00:00

Nodes=z[0101-0120] NodeCnt=20 CoreCnt=400 Features=(null) PartitionName=(null) Flags=WEEKLY,SPEC_NODES

TRES=cpu=800

Users=(null) Accounts=m2_himkurs,system Licenses=(null) State=ACTIVE BurstBuffer=(null) Watts=n/a

$ salloc -p parallel --reservation=himkurs -A m2_himkurs -N 1

Exercise 1: HIMster 2 log in

Learning objectives:

• Usage of ssh and asymmetric keys

Steps:

1. Go back to slide “Public-key cryptography” and create your keys

2. Login to Mogon 1 with username and password. Copy your PUBLIC (!) key

3. Login passwordless into Mogon 2/ HIMster2

Exercise 2: Reserve Resources
Learning objectives:
• Reserve resources
• Check number of cores on node

Steps:
1. Log into Himster 2

ssh miil01.zdv.uni-mainz.de
2. In your home directory, copy the workload manager with:

git clone https://gitlab.rlp.net/pbotte/workload-manager.git
3. Reserve a complete HIMSter node for 1h:

salloc -p parallel --reservation=himkurs -A m2_himkurs -N 1 -t 1:00:00
This step might take some minutes to complete. Wait until the prompt returns after “salloc: Nodes z0133 are ready
for job”

4. Find out how many cores your node has with
ssh [YOUR Node hostname]
cat /proc/cpuinfo
read the info and logout of that node with
logout

Exercise 3: Run a multicore analysis
Learning objectives:

• Run an executable on several cores in parallel

Steps:

1. Reserve first ressoures as described in exercise 2

2. After you double checked that you are on the head node again (prompt start with “login2…”), load the modules needed for python3 (for the
workload manager) and solver (Sundials) in exactly this order:
module load math/SUNDIALS/2.7.0-intel-2018.03
module load lang/Python/3.6.6-foss-2018b
Ignore the error messages (bonus: where do they come from?)

3. Run the analysis with the help of the workload manager by typing on the headnode:
srun -n 20 ~/workload-manager/wkmgr.py -v ~/workload-manager/examples/LGS/PulsedLGS ~/workload-
manager/examples/LGS/Run27_LaPalma_Profile_I50

4. Output is send back to the head node delayed and not in order.
Check with a second console any output written,
• run “top” to see running processes, or
• type „tree“, in the output directory ~/workload-manager/outputXXX

5. How much compared to a single core machine is roughly the speed up?

Hint: Like this, you can easily run on several nodes each having 32 cores.

Exercise 4: Run a multi node analysis (Bonus)
Learning objectives:

• Run an executable on several cores on several nodes in parallel

Steps:

1. Proceed like in exercise 3, but reserve 2 nodes with “-N 2”. Check first (eg ask around, or use “squeue”) whether more nodes are available.
Revoke your reservations from previous steps to free resources!

2. Try “srun” with the appropriate number, e.g. “-n 40”

3. How much compared to a single core machine is roughly the speed up?

