HIEPA: Super Tau-Charm Factory in China

Wolfgang Gradl

20th November 2018 Future opportunities in hadron physics

UNIVERSITÄT MAINZ

Introduction

- e^+e^- collider in the τ -charm region: long history in China, 30 years BEPC (1988-2005)
- most recent incarnation: BEPCII / BESIII, $\mathcal{L} = 1 \times 10^{33} \text{ cm}^{-2} \text{s}^{-1}$ at $\sqrt{\text{s}} = 3.77 \text{ GeV}$
- collaboration with international partners from the start,
- Super-τ-charm facility far beyond BEPCII is natural extension and viable options for a post-BEPCII project in China

These slides based on Peng Haiping's talk at Charm 2018 international workshops on HIEPA in 2015 (Hefei) and 2018 (Beijing / Huairou)

BEPCII: τ -charm facility

Features of dedicated τ -charm facility:

- threshold production
- clean signals, low backgrounds
- double-tag method
- high efficiency and resolution

...

Limitations of BEPCII/BESIII

- Iimited range in E_{cm} : 2 · · · 4.6 GeV
- Iuminosity $1 \times 10^{33} \text{ cm}^{-2} \text{s}^{-1}$
- small-ish upgrades planned:

increase \textit{E}_{cm} by 300 MeV, implement top-up injection (gain of 30% in $\mathcal{L}_{int})$

BEPCII/BESIII set to run for 8–10 more years whitebook to be published. Then what?

SuperTauCharm Facility | W. Gradl | 3

The BESIII Collaboration 2018

Super-Tau-Charm Facility

- Peak luminosity $1 \times 10^{35} \text{ cm}^{-2} \text{s}^{-1}$ at $\sqrt{s} = 4 \text{ GeV}$
- Energy range $E_{\rm cm} = 2 \cdots 7 \, {\rm GeV}$
- Polarisation on e⁻ beam (Phase II)
- Basic features:
 - Symmetric machine, dual-ring storage rings
 - Large Piwinski angle + crabbed waist
 - Siberian snake
 - ► Total cost 4×10^9 RMB $\approx 500 \times 10^6$ EUR

Luminosity evolution

Goal for integrated luminosity

Assumptions:

- 9 months / year running time (exclusive use of storage rings!)
- $\mathbf{L} = 1 \times 10^{35} \, \mathrm{cm}^{-2} \mathrm{s}^{-1}$
- average data taking efficiency 90%
- ... translate into

 $\mathcal{L}=2\,ab^{-1}/year$

- with 10 years of data taking: $10 ab^{-1}$ to $20 ab^{-1}$
- Competition with Belle II (eventually, $50 ab^{-1}$)

Data samples

			Belle II					
Data Set	process	σ/\rm{nb}	N	ST eff./%	ST N	$\sigma/{\rm nb}$	N	Tag N
J/ψ	-	_	$1.0 imes 10^{12}$	-	_	-	_	_
$\psi(2S)$	-	-	3.0×10^{11}		-	-	-	_
D^0	$D^0 \bar{D^0}(3.77)$	~ 3.6	$3.6 imes 10^9$	10.8	0.78×10^9	-	1.4×10^{9}	_
D^+	$D^+D^-(3.77)$	~ 2.8	2.8×10^{9}	9.4	0.53×10^{9}	-	7.7×10^{8}	-
D_s	$D_s D_s^*(4.18)$	~ 0.9	$0.9 imes 10^9$	6.0	0.11×10^9	-	2.5×10^8	-
_+	$\tau^{+}\tau^{-}(3.68)$	~ 2.4	2.4×10^{9}	-	-	0.9	$0.9 imes 10^9$	-
au	$\tau^{+}\tau^{-}(4.25)$	~ 3.6	3.5×10^{9}	-		-	-	-
Λ_c	$\Lambda_c \Lambda_c (4.64)$	~ 0.6	$5.5 imes 10^8$	5.0	$0.55 imes 10^8$	-	1.6×10^8	$3.6 \times 10^{4*}$

* process $e^+e^- \rightarrow D^{(*)-}\bar{p}\pi^+\Lambda_c^+$.

- STCF: comparable (or even higher) production rates per ab⁻¹
- STCF: higher efficiency, (much) larger tagged samples
- STCF: will not run exclusively on one fixed E_{cm}
- Belle II: larger integrated luminosity

SuperTayCharm Facility W. Grad & Convictoric with Bollo II 2

Luminosity expectation Bellell (ISR) vs BESIII (direct)

Luminosity expectation Bellell (ISR) vs BESIII (direct)

- Typical mass resolution for charged final states in ISR physics: $\lesssim 5\,{\rm MeV}/c^2$
- Spacing of BESIII R-scan points: 5 MeV (beam-energy spread ~ 1.3 MeV)

SuperTauCharm Facility | W. Gradl | 9

Charmonium-like states

• τ -C Factory : $e^+e^- \rightarrow Y/\psi \rightarrow Z_c^+ X$

- B factory : Total integrate effective luminosity between 4-5 GeV is 0.23ab⁻¹ for 50 ab⁻¹ data
- τ-C factory : scan in region 4-5 GeV, 10 MeV/step, every point have 20 fb⁻¹/year, 10 time of Belle II for 50 ab⁻¹ data
- τ-C factory have much higher efficiency than B Factory

• **B Factor** : ISR, B decay

Physics opportunities

Precision tests of SM

- 🕨 R scan
- Hadron form factors
 - (p, n, Λ , Λ_c , ...)
- Transition form factors
- Δα_{QED}, a_µ
- τ decays, lepton universality tests
- CKM matrix |V_{us}|, |V_{cs}|

CP violation

- CPV in τ or charm decays
- CPV in baryon / hyperon / charmed baryon decays

NP searches

- Rare / forbidden decays of charm, charmonium, τ FCNC, LFV, LNV, BNV, invisible ...
- Rare decays of light mesons
 (η, η', ω, φ)

Hadron physics

- spectroscopy of mesons, baryons, hyperons
- threshold effects
- glueball searches
- multiquark, exotics, hybrids ...
- charmonium(-like) spectroscopy
- charmed baryons

Exotic physics

- light dark matter
- new interactions

Example: charmonium-like state $Z(4430)^+ \rightarrow \psi(2S)\pi^+$

- Seen by Belle in $\bar{B}^0
 ightarrow \psi(2S) \pi^+ K^-\,$ PRL 100, 142001
- no significant signal in BABAR data ($\approx \frac{1}{2}$ Belle's statistics) PRD 79, 112001
- Belle 4-dim amplitude analysis: clear signal PRD 88, 074026
- LHCb: 10× Belle's statistics: confirms Belle and shows phase motion PRL 112, 222002
 ^P 1[±] Proit Wigner like phase motion
 - $J^P = 1^+$, Breit-Wigner-like phase motion

Similarly for $Z_c(3900) \rightarrow J/\psi \pi^+$ and $Z_c(4020) \rightarrow h_c \pi^+$?

Threshold cusp?

- D. Bugg, Europhys. Lett. 96, 11002 (2011)
- E. Swanson. PRD 91, 034009 (2015)

Lesson for HIEPA

Bump hunting is out! multi-dimensional coupled-channel

amplitude analyses are required.

High statistics phase-motion measurements are essential.

Potential site for HIEPA: Hefei

About 2 hours by airplane from Beijing, or 2.5 hours by high-speed train from Shanghai

Potential site for HIEPA: Hefei

One of three integrated national science center, which will play

important role in 'Megascience' of China in near future

Tentative timeline

	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030- 2040	2041- 2042
Form International														
Collaboration			•											
Conception Design														
Report (CDR)														
Technical Design														
Report (TDR)														
Construction														
Commissioning														
Upgrade														

Peng Hai-Ping, Charm 2018

Super- τ -charm facility in Russia

- Novosibirsk super-τ-charm project
 Under consideration since 2006
- Substantial documentation available
- SCTF approved by Russian Government, endorsed by ECFA funding by 2020 ?
- Accelerator design being adapted to recent developments e.g. increase of E_{cm} to 6 GeV, increased luminosity
- Common workshop with Chinese project, at LAL, Orsay, Dec 4–7, 2018:

http://workshop-tau-charm-factory.lal.in2p3.fr/

Summary

- Super-τ-charm facility natural extension of very successful BES-BESII-BESIII
- At the precision frontier
 - Rich physics programme
 - Precision tests of SM, interplay with *B* physics programme (LHCb, Belle II)
 - Important for study of QCD, exotic hadrons, and searches for BSM
- STCF in China
 - Could come online 2030, after the end of BESIII operation
 - Appears favourably in reports to Ministry of Science and Technology, Chinese National Science Foundation, and Chinese Academy of Science
 - R&D funds allocated
 - International collaboration being formed now, essential for promoting the project
- Interplay with STCF in Novosibirsk?

