LHCb's Prospect for Hadron Physics

Sebastian Neubert*, Ulrich Uwer

Physikalisches Institut

Universität Heidelberg

*) funded by the DFG Emmy Noether Progamm

Physics Case for an LHCb Upgrade II, CERN-LHCC-2018-027 (Aug 2018)

W Spectroscopy Highlights at LHCb Run I/II

X(3872) Quantum Numbers [PRL110(2013)222001][PRD92(2015)011102]

 $J^{PC} = 1^{++}$ established

Full angular analysis of $B^+ \rightarrow J/\psi \rho^0 K$ sets limit on D-wave decay fraction 4% @ 95% C.L.

Compatible with DD^* molecular interpretation

 $\chi_{c1}(2^3P_1)$ closest allowed charmonium state

Resonant nature of Z⁻(4430) [PRL112(2014)222002]

Amplitude analysis of $B^- \rightarrow \psi' K \pi$

Established the resonance character of the Z(4430)

 $B^{+}\!\rightarrow\!X(3872)K^{+}$ w/ $X(3872)\rightarrow\pi\pi J/\psi$

Spectroscopy Highlights at LHCb Run I/II

Pentaquark-like structures in $J/\psi p$ [PRL115(2015)072001] using $A^0_b \rightarrow J/\bar{\psi}K^-p$

Quantum number assignment not unique

Spectroscopy Highlights at LHCb Run I/II

Excited Ω_c states [PRL118(2017)182001] 5 narrow resonances in $\Xi_c^+ K^ -\Xi_c^+ \to pK^-\pi^+$ Candidates / (1 MeV 400 LHCb 300 200 100 3000 3300 3100 3200 $m(\Xi_c^+K^-)$ [MeV]

Quantum numbers still unknown

Beauty Spectroscopy

 $\Omega_b \text{lifetime} \text{ [PRL121(2018)092003]} \\ \tau = 268 \pm 24 \pm 10 \pm 2 \, \text{fs} \\ \text{4 times larger than world average} \\$

A new Ξ_b excited state [PRL121(2018)072002] observed in $|\Lambda_b^0 K^-$ and $\Xi_b^0 \pi^-$

First observation of $B_c \rightarrow J/\psi D^{0(*)}K$ [PRD95(2017)032005] most precise single measurm. of B_c mass:

 $m = 6274.28 \pm 1.40(stat) \pm 0.32(syst)\,{\rm MeV}/c^2$

Spectroscopy Highlights at LHCb Run I/II

Light hadron physics

S.Ropertz, C.Hanhart, B.Kubis [1809.06867]

Strangeness spectroscopy [EPJC78(2018)443]

Extraction of K^{*} amplitudes from $D^0 \to K\pi\pi\pi$

 $K(1460): m = 1482.40 \pm 3.58 \pm 15.22 \,\mathrm{MeV}/c^2$ $\Gamma_0 = 335.60 \pm 6.20 \pm 8.65 \,\mathrm{MeV}/c^2$

Prospects with the LHCb Upgrades

- Large samples of Jpsi hh modes
- First observations of many interesting channels, but amplitude analyses stat. limited
- Amplitude analyses with complex final states
- Search for suppressed decays

- Amplitude analyses with suppressed decays
- Decays with challenging final states
- Rare initial states

W Tetraquark and Pentaquark properties

Multichannel analysis of exotic hadrons and search for suppressed decays. Examples:

•
$$X(3872) \rightarrow \chi_{c1}\pi\pi, J/\psi\omega, J\psi\rho, D\bar{D}^*$$

(investigate nature of X(3872)

•
$$P_c \to J/\psi p, \chi_{c1}p, \Lambda_c \bar{D}^{0(*)}$$

•
$$Z^+ \to J/\psi\pi, \psi(2S)\pi, \chi_c\pi, \eta_c\pi$$

• Radiative decays, such as $X(3872)
ightarrow \psi \gamma$ (see [NUCL.PHYS. B886(2014)665] for Run I measurement)

Amplitude analysis: $\Lambda_b \to \Lambda_c \bar{D}^{0(*)} K$

- Search for pentaquark decays with two open charm daughters
- Predictions in molecular model

	Widths (MeV)						
	Mode	$P_{c}(4380)$		$P_{c}(4450)$			
		$\bar{D}\Sigma_c^*(\frac{3}{2}^-)$	$\bar{D}^*\Sigma_c(\frac{3}{2}^-)$	$\bar{D}^*\Sigma_c(\frac{3}{2}^-)$	$\bar{D}^*\Sigma_c(\frac{5}{2}^+)$		
Final	$\bar{D}^*\Lambda_c$	131.3	41.6	80.5	22.6		
etatoe	$J/\psi p$	3.8	8.4	8.3	2.0		
SIGIES	$\bar{D}\Lambda_c$	1.2	17.0	41.4	18.8		
[PRD95(2017)114017],							
[Nucl. Phys. A 954(2016)393]							

 Challenging final state with 6 charged tracks Toy simulation: Dalitz plot with 9fb⁻¹ (no pentaquarks in simulation)

W Amplitude analysis: $\Lambda_b \to \Lambda_c \bar{D}^{0(*)} K$

- Search for pentaquark decays with two open charm daughters
- Predictions in molecular model

	Widths (MeV)					
Mode	$P_c(4$	1380)	$P_{c}(4450)$			
	$\bar{D}\Sigma_c^*(\frac{3}{2}^-)$	$\bar{D}^*\Sigma_c(\frac{3}{2}^-)$	$\bar{D}^*\Sigma_c(\frac{3}{2}^-)$	$\bar{D}^*\Sigma_c(\frac{5}{2}^+)$		
$\bar{D}^*\Lambda_c$	131.3	41.6	80.5	22.6		
$J/\psi p$	3.8	8.4	8.3	2.0		
$\bar{D}\Lambda_c$	1.2	17.0	41.4	18.8		

][PRD95(2017)114017] [Nucl. Phys. A 954(2016)393

Challenging final state with 6 charged hadronic tracks (detection efficiency ~×50 less than J/psi p K) Toy simulation: **Dalitz plot with 50fb⁻¹** (no pentaquarks in simulation)

Search for Exotic Multiplets

- C-odd or charged partner to $\chi_{c1}(3872)$ has not been found yet $\circ J/\psi\eta, \chi_c\gamma; J/\psi\pi^{\pm}\pi^0$
- Isospin-partner of the pentaquarks can be searched for in decays to pairs of open charm hadrons

• Strange pentaquarks $\circ \quad \Lambda_b o J/\psi \Lambda \phi$

$$\Xi_b \to J/\psi \Lambda K$$

$$\Xi_b \to \Lambda_c D_s K$$

- requires efficient Hyperon reconstruction
- LHCb is the only experiment where these heavy Baryon decays can be studied!

Double Heavy Exotics

Doubly charmed tetraquarks $cc\bar{q}\bar{q}'$ would have unambiguously exotic signatures

Overcoming the B_c production cross section and detection efficiency (7 hadrons) requires Upgrade II samples. Expectation: O(100) candidates in 300 fb⁻¹ Double beauty exotics can be searched for in production:

Searches with beauty in the final state suffer from small branching fractions for exclusive reconstruction

Beautiful exotics

Tetraquark and pentaquark model calculations tend to be more stable in the beauty sector

Tetraquarks with hidden beauty:

$$\begin{split} &\Upsilon(1S)\omega \text{ would profit from improved }\pi^0 \\ &\text{reconstruction in Upgrade II.} \\ &\text{A first search } |b\bar{b}b\bar{b}\rangle \to \Upsilon\mu\mu \\ &\text{yielded limits} \\ &\text{[JHEP10(2018)086]}- \\ &\text{will profit significantly} \\ &\text{from higher statistics} \end{split}$$

Pentaquarks with beauty:

Hidden beauty, double heavy: $|Q\bar{Q}qqq\rangle \rightarrow \Upsilon p, \Upsilon\Lambda, B_c p, B_c\Lambda$

Open beauty:

 $2\mu^{-}$) [MeV/ c^{2}]

A search [PRD97(2018)032010] for weakly decaying $|b\bar{q}qqq\rangle \rightarrow J\psi ph^+h^-$ has set limits on production x branching fraction

Searches with beauty in the final state suffer from small branching fractions for exclusive reconstruction

Double Heavy Baryons

Expected yields for **doubly charmed baryons** after Run 5:

 $\Xi_{cc} : 25\,000$ $\Omega_{cc} : 4\,500$

in each of several decay modes

Challenge: discriminate from prompt charm in the trigger (-> real time analysis)

Baryons with beauty and charm: Predicted production cross section: 77nb [PRD83(2011)034026]

Most promising decay modes for discovery: $J/\psi \Xi_c^+, J/\psi \Xi_c^0, J/\psi \Lambda_c^+, J/\psi \Lambda_c^+ K^ \Xi_{cc} \pi^-, D^0 \Lambda_c^+, D^0 \Lambda_c^+ \pi^-, D^0 D^0 p$

Modes w/ beauty in FS: $\Xi_b\pi, \Lambda_b\pi, B^0p$

Charmonium production

The kinematic distribution of the charmonium production cross section is well described in NRQCD

Polarisation observables are not understood in the same theory

Observation of

 $\chi_{c1,2} \to J/\psi \mu^+ \mu^-$

will allow almost backgr. [°] freestudy of polarisation [PRL119(2017)221801]

Double charmonium production:

Current data samples do not allow to distinguish between single parton and double parton scattering mechanism

Progress requires larger samples of prompt $J/\psi J/\psi, \Upsilon J/\psi, \Upsilon \Upsilon$

With Upgrade II polarisation observables in double charmonium production become feasible.

Hadron Physics with LHCb

- LHCb has demonstrated its ability to contribute to the understanding of hadrons much beyond the scope of flavor physics.
- Upgrade I will further improve LHCb's capability to reconstruct rare and complex final states (data-taking will start in 2021).
- The planned Upgrade II would boost the data-set drastically (a factor 100 w/r to what has been used so far in most analyses), allowing amplitude analyses even for suppressed decays and challenging final states.
- LHCb will further consolidate its role as one of the major players in the search for new exotic hadronic states and hadron spectroscopy.