

Future opportunities in Hadron Physics for the European Particle Physics Strategy Mainz – November 20 2018

Hadron Physics with a fixed target at LHC

V. Carassiti¹ G. Ciullo¹ P. Di Nezza² P. Lenisa¹ <u>L.L. Pappalardo</u>¹ E. Steffens³

¹ University of Ferrara and INFN, ² INFN - <u>Laboratori Nazionali di Frascati</u>, ³ University of Erlangen

In collaboration with:

R.Engels (fz-juelich), J.Depner (Erlangen), K.Grigoryev (fz-juelich), E.Maurice (CNRS/IN2P3, Orsay), A.Nass (fz-juelich), F.Rathmann (fz-juelich), D.Reggiani (PSI-Zurich), A.Vasilyev (Gatchina),

$$E_p = 7 \text{ TeV} \implies \begin{cases} \sqrt{s} = 115 \text{ GeV} \\ \gamma = \sqrt{s}/2m_p \approx 60 \end{cases} \implies y_{CM} = y_{lab} - 4.8 \end{cases}$$

2

$$E_{p} = 7 \text{ TeV} \implies \begin{cases} \sqrt{s} = 115 \text{ GeV} \\ \gamma = \sqrt{s}/2m_{p} \approx 60 \end{cases} \implies y_{CM} = y_{lab} - 4.8 \end{cases}$$

$$2 \leq y_{lab} \leq 5$$
(LHCb acceptance)
$$\implies acceptance = 3.0 \leq y_{CM} \leq 0$$

$$x_{1} = x_{2}$$

$$x_{1} = x_{2}$$

$$x_{1} = x_{2}$$

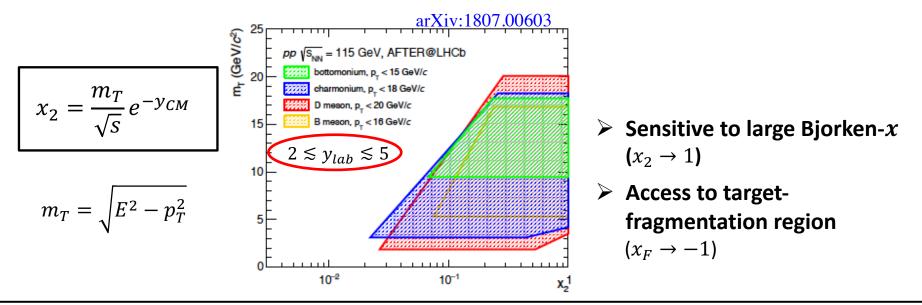
$$x_{1} = x_{2}$$

$$y_{CM} \approx -3.0$$

$$(\theta \sim 15^{\circ})$$

A forward spectrometer at LHC can access the backward CM region with reaction products at measurable forward angles!

2


$$E_{p} = 7 \text{ TeV} \implies \begin{cases} \sqrt{s} = 115 \text{ GeV} \\ \gamma = \sqrt{s}/2m_{p} \approx 60 \end{cases} \implies y_{CM} = y_{lab} - 4.8 \end{cases}$$

$$2 \leq y_{lab} \leq 5$$
(LHCb acceptance)
$$\implies \boxed{-3.0 \leq y_{CM} \leq 0}$$

$$x_{1} \qquad x_{2}$$
Lab system
$$y_{CM} \approx -3.0$$

$$(\theta \sim 15^{\circ})$$

A forward spectrometer at LHC can access the backward CM region with reaction products at measurable forward angles!

L.L. Pappalardo - Future opportunities in Hadron Physics for the EU Particle Physics Strategy - Mainz - Nov. 20 1018 4

2

$$E_{p} = 7 \text{ TeV} \implies \begin{cases} \sqrt{s} = 115 \text{ GeV} \\ \gamma = \sqrt{s}/2m_{p} \approx 60 \end{cases} \implies y_{CM} = y_{lab} - 4.8 \end{cases}$$

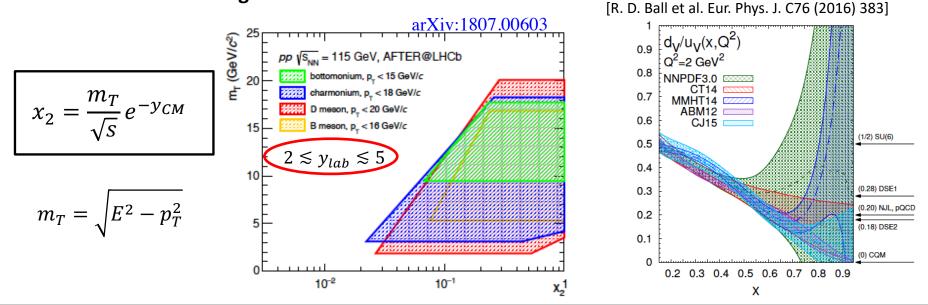
$$2 \leq y_{lab} \leq 5$$
(LHCb acceptance)
$$\implies acceptance = 0$$

$$-3.0 \leq y_{CM} \leq 0$$

$$x_{1} = x_{2}$$

$$x_{1} = x_{2}$$

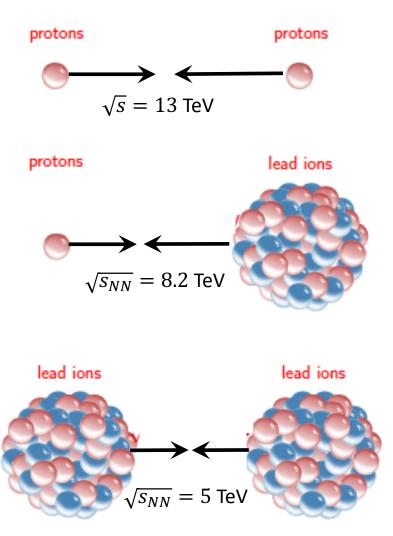
$$x_{1} = x_{2}$$

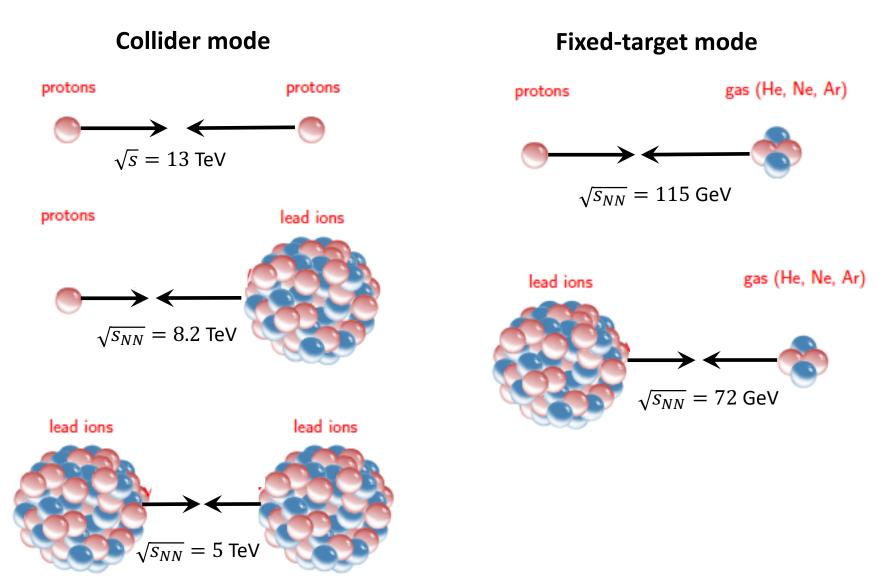

$$x_{1} = x_{2}$$

$$y_{CM} \approx -3.0$$

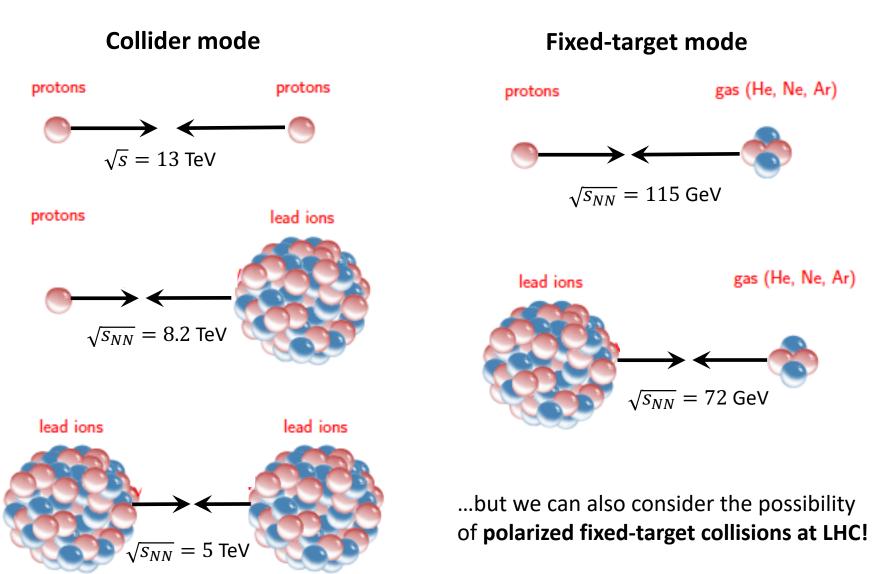
$$(\theta \sim 1^{\circ})$$

$$(\theta \sim 1^{\circ})$$


A forward spectrometer at LHC can access the backward CM region with reaction products at measurable forward angles!


L.L. Pappalardo - Future opportunities in Hadron Physics for the EU Particle Physics Strategy - Mainz - Nov. 20 1018 5

Types of collisions with a fixed-target experiment at LHC


Collider mode

Types of collisions with a fixed-target experiment at LHC

Types of collisions with a fixed-target experiment at LHC

✓ Unique kinematic conditions

- $E_p = 7 \text{ TeV} \implies \sqrt{s} \approx 115 \text{ GeV}$ (fills the gap between between SPS & RHIC)
- backward CM rapidity region ($x_F \rightarrow -1$)
- sensitive to poorly explored high *x*-Bjorken region

✓ Unique kinematic conditions

- $E_p = 7 \text{ TeV} \implies \sqrt{s} \approx 115 \text{ GeV}$ (fills the gap between between SPS & RHIC)
- backward CM rapidity region ($x_F \rightarrow -1$)
- sensitive to poorly explored high x-Bjorken region

✓ Wide range of possible reactions:

- polarized: pp^{\uparrow} , pd^{\uparrow}
- unpolarized: pA , PbA (A=H, D, He, N, Ne, Ar, Kr, Xe)

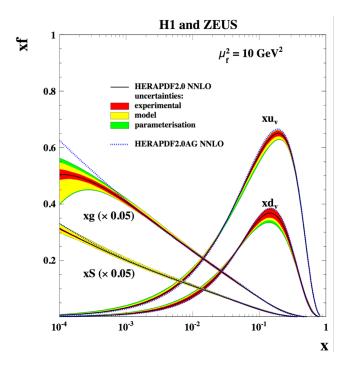
✓ Unique kinematic conditions

- $E_p = 7 \text{ TeV} \implies \sqrt{s} \approx 115 \text{ GeV}$ (fills the gap between between SPS & RHIC)
- backward CM rapidity region ($x_F \rightarrow -1$)
- sensitive to poorly explored high x-Bjorken region
- ✓ Wide range of possible reactions:
 - polarized: pp^{\uparrow} , pd^{\uparrow}
 - unpolarized: pA , PbA (A=H, D, He, N, Ne, Ar, Kr, Xe)
- $\checkmark\,$ Marginal impact on LHC beam and mainstream physics at current experiments
- ✓ Polarized gas target technology well established (10 years @ HERMES)
- ✓ Very high performances (P~80 %)

✓ Unique kinematic conditions

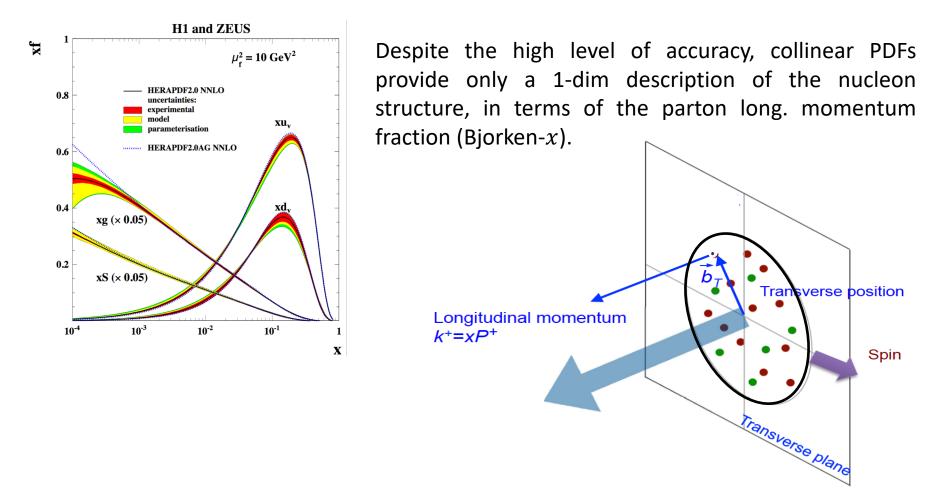
- $E_p = 7 \text{ TeV} \implies \sqrt{s} \approx 115 \text{ GeV}$ (fills the gap between between SPS & RHIC)
- backward CM rapidity region ($x_F \rightarrow -1$)
- sensitive to poorly explored high x-Bjorken region

✓ Wide range of possible reactions:

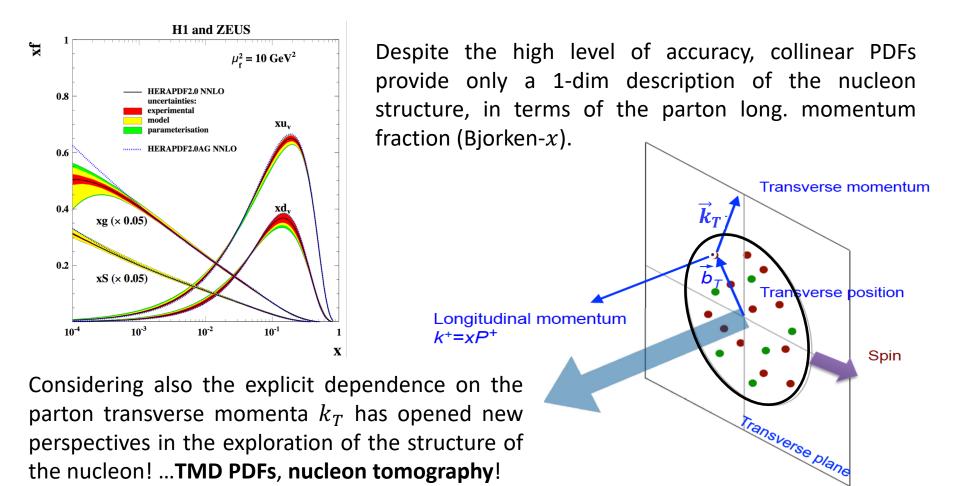

- polarized: pp^{\uparrow} , pd^{\uparrow}
- unpolarized: pA , PbA (A=H, D, He, N, Ne, Ar, Kr, Xe)
- $\checkmark\,$ Marginal impact on LHC beam and mainstream physics at current experiments
- ✓ Polarized gas target technology well established (10 years @ HERMES)
- ✓ Very high performances (*P*~80 %)

Broad and ambitious physics program

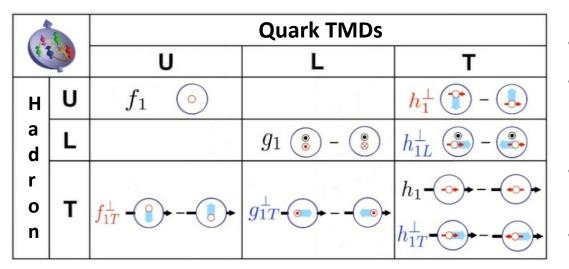
- 3D mapping of the nucleon structure (quark and gluon PDFs)
- fundamental tests of QCD (universality, factorization, etc)
- study of cold nuclear matter effects
- search for intrinsic heavy quarks
- study of QGP formation
- ... and much more!


Accessing the nucleon structure

The present knowledge of the nucleon structure is dominated by **collinear (unpol.) PDFs**, measured with great precision in decades of DIS experiments

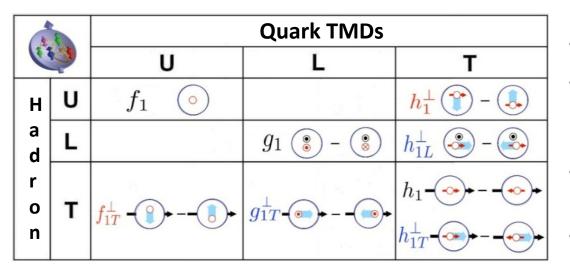

Accessing the nucleon structure

The present knowledge of the nucleon structure is dominated by **collinear (unpol.)** PDFs, measured with great precision in decades of DIS experiments

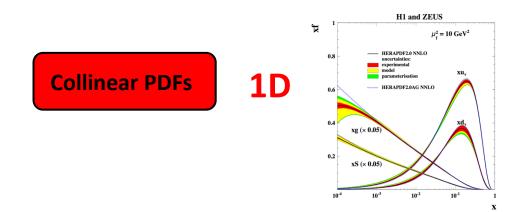


Accessing the nucleon structure

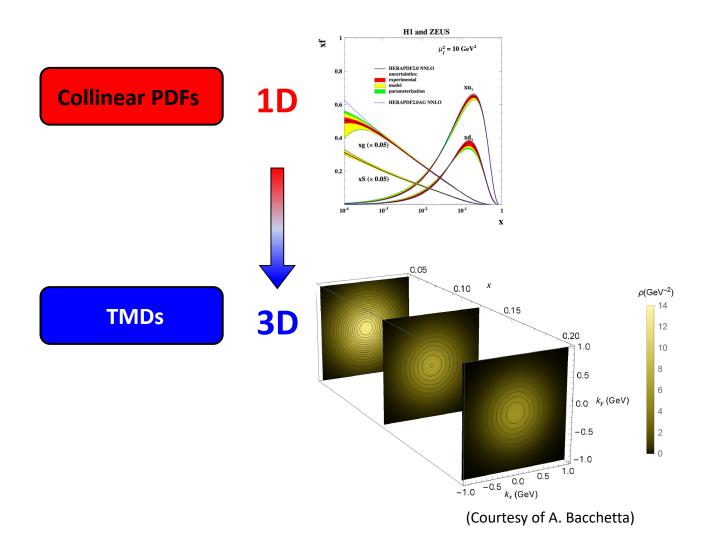
The present knowledge of the nucleon structure is dominated by **collinear (unpol.)** PDFs, measured with great precision in decades of DIS experiments



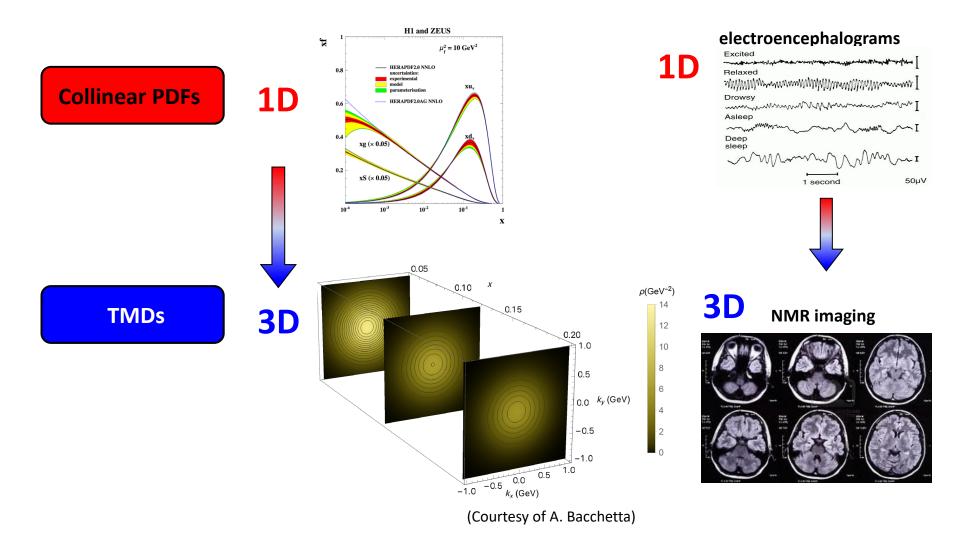
The quark TMDs

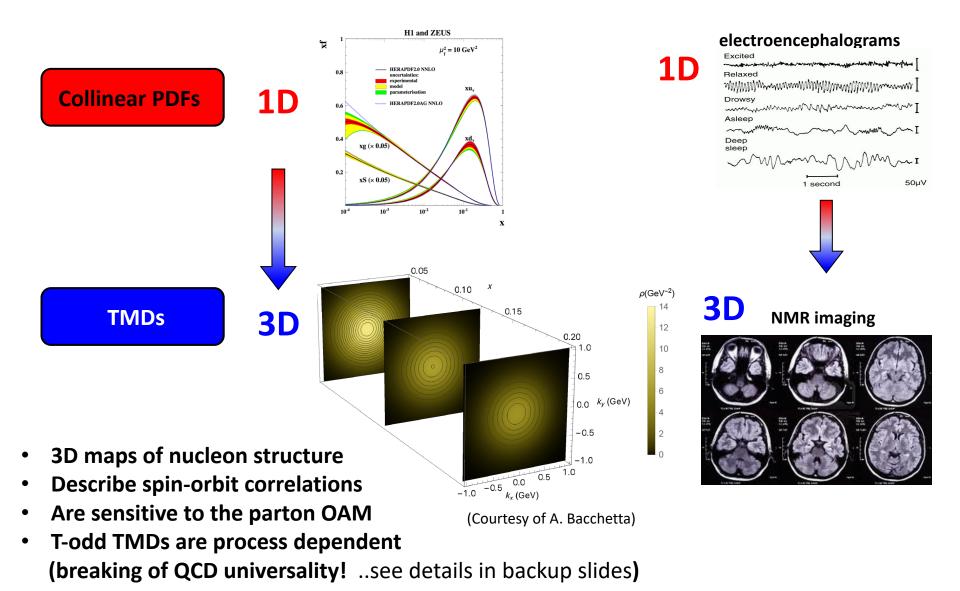

- 8 independent TMDs at twist-2
- Each with a probabilistic interpretation in terms of parton densities
 - Significant experimental progress in the last 15 years!
- First extractions from global analyses

The quark TMDs

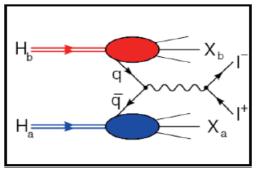


- 8 independent TMDs at twist-2
- Each with a probabilistic interpretation in terms of parton densities
- Significant experimental progress in the last 15 years!
- First extractions from global analyses
- So far, main results obtained in SIDIS measurements (HERMES, COMPASS, JLAB)
- **Drell-Yan** in hadron-hadron collisions represents a complementary approach
- Unique kinematic region with fixed-target collisions at LHC
- Comparison of results from SIDIS and DY will allow to set stringent tests on QCD: factorization, evolution, universality


Mapping the nucleon structure

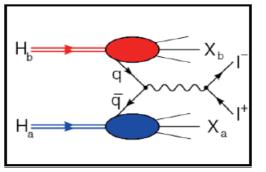

Mapping the nucleon structure

Mapping the nucleon structure



Mapping the nucleon structure ... and more

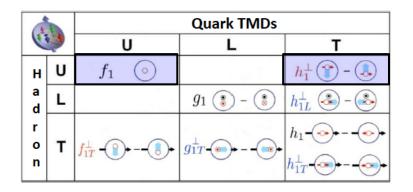
L.L. Pappalardo - Future opportunities in Hadron Physics for the EU Particle Physics Strategy - Mainz - Nov. 20 1018 21


Unpolarized Drell-Yan

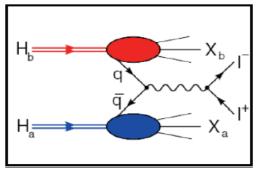
- Clean process
 - LHC experiments have excellent reconstruction capabilities for $\mu\mu$ channel!

• Dominant process:
$$\bar{q}(x_{beam}) + q(x_{target}) \rightarrow \mu\mu$$

Unpolarized Drell-Yan



- Clean process
- LHC experiments have excellent reconstruction capabilities for $\mu\mu$ channel!

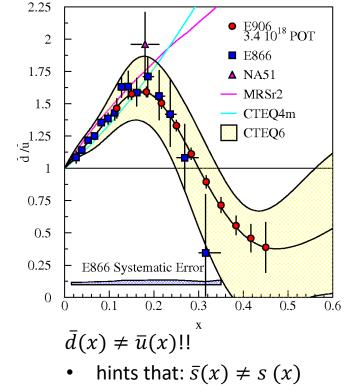

• Dominant process:
$$\overline{q}(x_{beam}) + q(x_{target}) \rightarrow \mu\mu$$

• Provides sensitivity to unpolarized and BM TMDs

 $\sigma_{UU} ~\propto~ f_1 f_1 + \cos 2 \phi ~ oldsymbol{h}_1^\perp oldsymbol{h}_1^\perp$

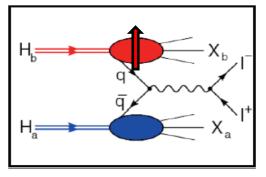
Unpolarized Drell-Yan

- Clean process
- LHC experiments have excellent reconstruction capabilities for $\mu\mu$ channel!


• Dominant process:
$$\bar{q}(x_{beam}) + q(x_{target}) \rightarrow \mu\mu$$

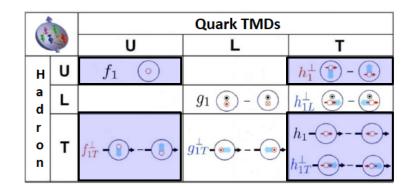
• Provides sensitivity to unpolarized and BM TMDs

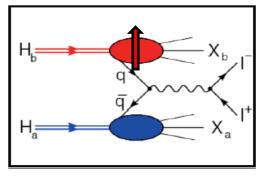
 $\sigma_{UU} \propto f_1 f_1 + \cos 2\phi \, h_1^\perp h_1^\perp$


		Quark TMDs		
		U	L	Т
н	U	f_1 \bigcirc		h_1^{\perp} (*) - (.)
a d	L		g_1 (\bigcirc - (\bigotimes)	h_{1L}^{\perp} .
r o n	т	f_{1T}^{\perp} - $()$	g [⊥] _{1T} -,,,-,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	$h_1 - \bigcirc \bullet \bigcirc \bullet$ $h_{1T}^{\perp} - \bigcirc \bullet \bigcirc \bullet$

Using fixed H and D targets
 allows to study the antiquark
 content of the nucleon!

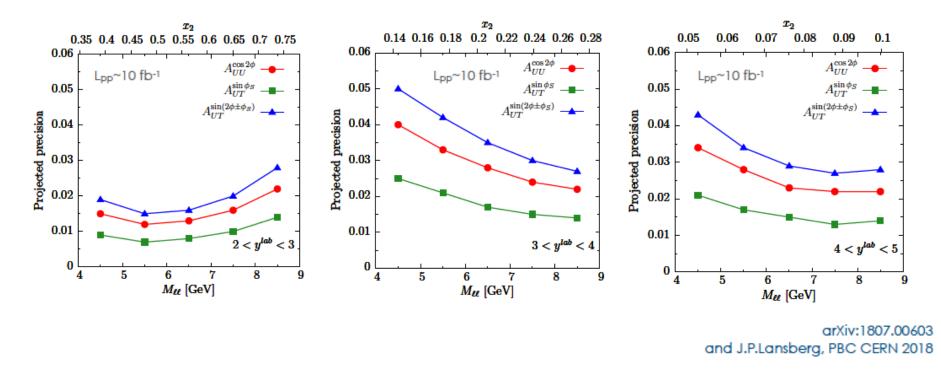
- sea is not flavour symmetric!
- intrinsic sea quarks?


Polarized Drell-Yan


Sensitive to quark TMDs up to high x_2^{\uparrow} through TSSAs

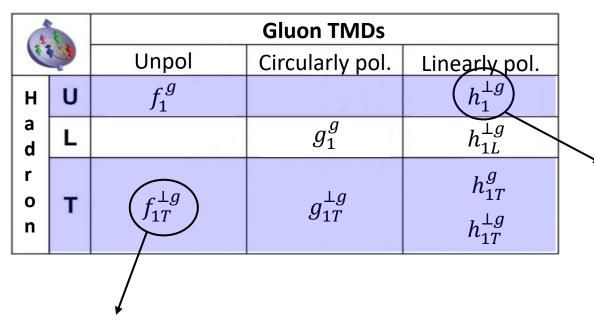
$$A_{UT}^{sin\phi_s} \sim \frac{f_1^q \otimes f_{1T}^{\perp q}}{f_1^q \otimes f_1^q} \qquad A_{UT}^{sin(2\phi+\phi_s)} \sim \frac{h_1^{\perp q} \otimes h_{1T}^{\perp q}}{f_1^q \otimes f_1^q} \qquad A_{UT}^{sin(2\phi-\phi_s)} \sim \frac{h_1^{\perp q} \otimes h_1^q}{f_1^q \otimes f_1^q}$$


($\phi :$ azimuthal orientation of lepton pair in dilepton CM)


Polarized Drell-Yan

Sensitive to quark TMDs up to high x_2^{\uparrow} through TSSAs

(ϕ : azimuthal orientation of lepton pair in dilepton CM)



		Gluon TMDs		
		Unpol	Circularly pol.	Linearly pol.
н	U	f_1^g		$\left(h_{1}^{\perp g}\right)$
a d	L		g_1^g	$h_{1L}^{\perp g}$
r o n	т	$f_{1T}^{\perp g}$	$g_{1T}^{\perp g}$	$egin{array}{c} h_{1T}^g \ h_{1T}^{\perp g} \ h_{1T}^{\perp g} \end{array}$

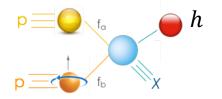
Theory framework consolidated

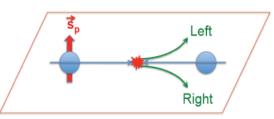
...but experimental access still extremely limited!

Note: gluons with non-zero p_T
 ✓ inside an unpolarized hadron can be linearly polarized!

Theory framework consolidated

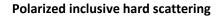
...but experimental access still extremely limited!

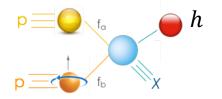

Note: gluons with non-zero p_T inside an unpolarized hadron can be linearly polarized!

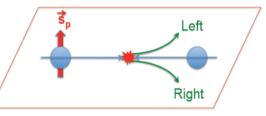

Gluon Sivers function:

- first hints by RHIC and COMPASS, but still basically unknown!
- shed light on spin-orbit correlations of gluons inside the proton
- sensitive to gluon orbital angular momentum!

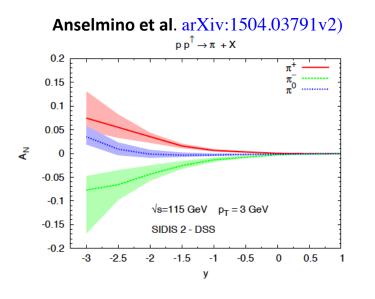
Main observables in pol. hadron collisions: Single Transverse Spin Asymmetries (TSSAs)

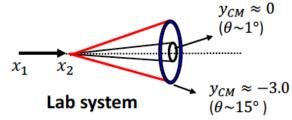

Polarized inclusive hard scattering

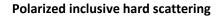


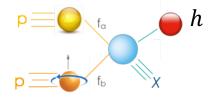


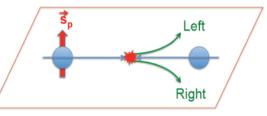
$$A_N = \frac{1}{P} \frac{\sigma^{\uparrow} - \sigma^{\downarrow}}{\sigma^{\uparrow} + \sigma^{\downarrow}} \sim \frac{1}{P} \frac{N_h^{\uparrow} - N_h^{\downarrow}}{N_h^{\uparrow} + N_h^{\downarrow}}$$

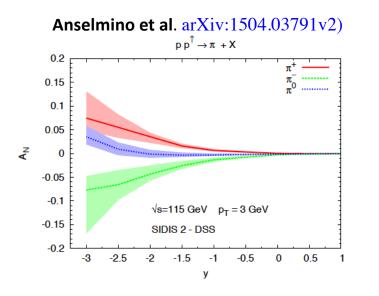

Main observables in pol. hadron collisions: Single Transverse Spin Asymmetries (TSSAs)

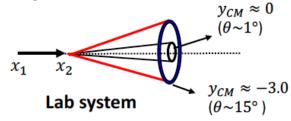



$$A_N = \frac{1}{P} \frac{\sigma^{\uparrow} - \sigma^{\downarrow}}{\sigma^{\uparrow} + \sigma^{\downarrow}} \sim \frac{1}{P} \frac{N_h^{\uparrow} - N_h^{\downarrow}}{N_h^{\uparrow} + N_h^{\downarrow}}$$

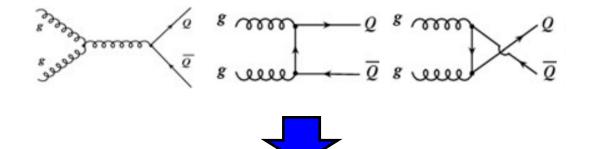



- Asymmetries above 10 %! Big signature!!
- The effect increases with more negative CM rapidity
- Nicely matches a forward spectrometer acceptance with fixed target at LHC

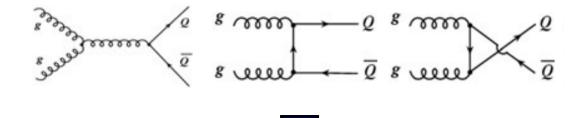

Main observables in pol. hadron collisions: Single Transverse Spin Asymmetries (TSSAs)



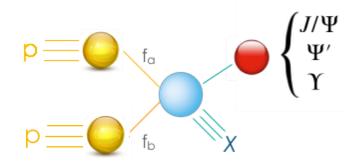
$$A_N = \frac{1}{P} \frac{\sigma^{\uparrow} - \sigma^{\downarrow}}{\sigma^{\uparrow} + \sigma^{\downarrow}} \sim \frac{1}{P} \frac{N_h^{\uparrow} - N_h^{\downarrow}}{N_h^{\uparrow} + N_h^{\downarrow}}$$


- Asymmetries above 10 %! Big signature!!
- The effect increases with more negative CM rapidity
- Nicely matches a forward spectrometer acceptance with fixed target at LHC

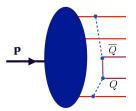
Inclusive pion production provides mainly sensitivity to the quark PDFs, but a fixed polarized target at LHC can also open the way to the **extraction of polarized gluon PDFs through heavy-flavour observables.**


L.L. Pappalardo - Future opportunities in Hadron Physics for the EU Particle Physics Strategy - Mainz - Nov. 20 1018 **31**

In high-energy hadron collisions Heavy quarks dominantly produced through gg interactions:


The most efficient way to access the gluon dynamics inside the proton at LHC is to **measure heavy-flavour observables**

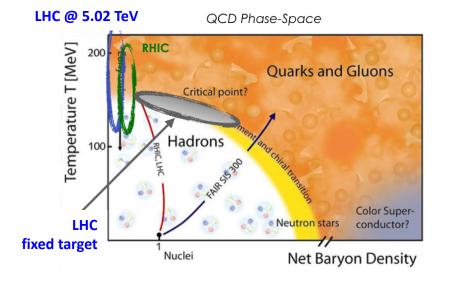
In high-energy hadron collisions Heavy quarks dominantly produced through gg interactions:

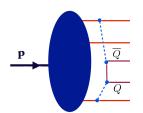

The most efficient way to access the gluon dynamics inside the proton at LHC is to **measure heavy-flavour observables**

Inclusive quarkonia production in pp interaction turns out to be an ideal gluonsensitive observable!

More physics reach with an unpolarized fixed target

- Intrinsic heavy-quark [S.J. Brodsky et al., Adv. High Energy Phys. 2015 (2015) 231547]
 - 5-quark Fock state of the proton may contribute at high x!
 - charm PDFs at large x could be larger than obtained from conventional fits

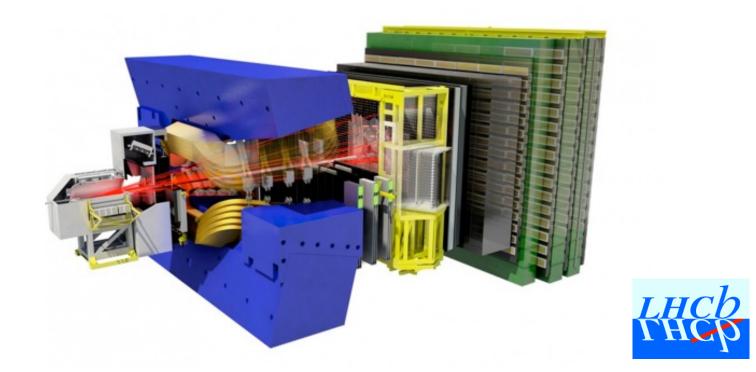



More physics reach with an unpolarized fixed target

- Intrinsic heavy-quark [S.J. Brodsky et al., Adv. High Energy Phys. 2015 (2015) 231547]
 - 5-quark Fock state of the proton may contribute at high x!
 - charm PDFs at large x could be larger than obtained from conventional fits
- **pA collisions** (using unpolarized gas: He, N, Ne, Ar, Kr, Xe)
 - constraints on nPDFs (e.g. on poorly understood gluon antishadowing at high x!)
 - studies of parton energy-loss and cold nuclear matter effects

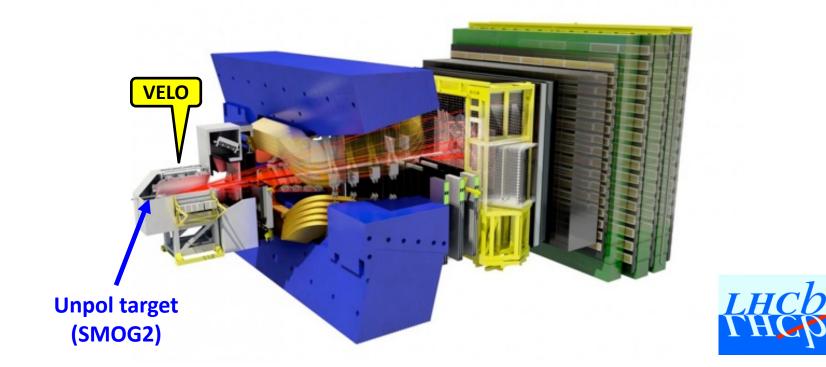
More physics reach with an unpolarized fixed target

- Intrinsic heavy-quark [S.J. Brodsky et al., Adv. High Energy Phys. 2015 (2015) 231547]
 - 5-quark Fock state of the proton may contribute at high x!
 - charm PDFs at large x could be larger than obtained from conventional fits
- **pA collisions** (using unpolarized gas: He, N, Ne, Ar, Kr, Xe)
 - constraints on nPDFs (e.g. on poorly understood gluon antishadowing at high x!)
 - studies of parton energy-loss and cold nuclear matter effects
- **PbA collisions at** $\sqrt{s_{NN}} \approx 72$ GeV (using unpolarized gas: He, N, Ne, Ar, Kr, Xe) - Study of QGP formation



Experimental realizations

The LHCSpin project aims to bring spin physics at the LHC through the implementation of a polarized fixed target in the LHCb spectrometer.



The LHCSpin project

The project consists of two phases:

Phase I

Upgrade the present LHCb unpol. fixed-target system (**SMOG**) with the installation of a storage cell in the LHC beam pipe upstream of the VELO tracker (\rightarrow **SMOG2**)

The LHCSpin project

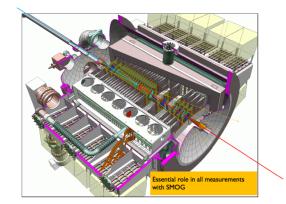
The project consists of two phases:

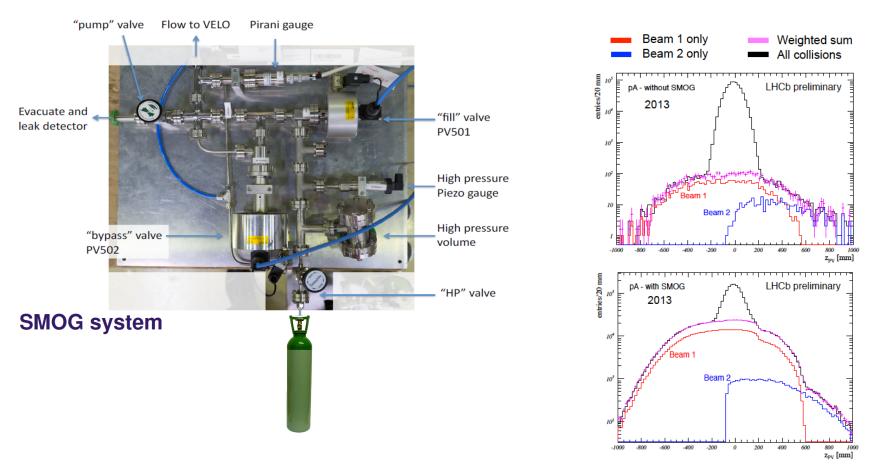
Phase I

Upgrade the present LHCb unpol. fixed-target system (**SMOG**) with the installation of a storage cell in the LHC beam pipe upstream of the VELO tracker (\rightarrow **SMOG2**)

Phase II

Installation of a HERMES-like Polarized Gas Target system (PGT) in front of LHCb

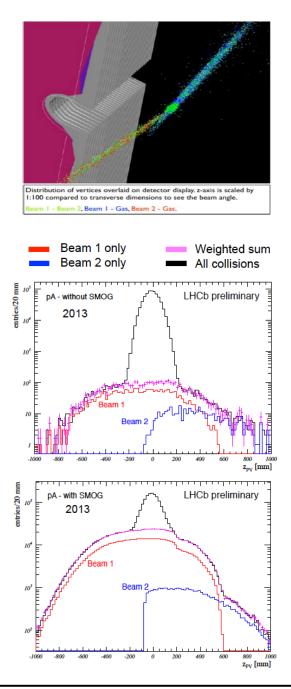




The LHCb fixed-target system

SMOG: System for Measuring Overlap with Gas:

- Low density noble gas injected in the VELO vessel ($\sim 10^{-7}$ mbar)
- Gas pressure 2 orders of magnitude higher than LHC vacuum
- Beam-gas collision rate increased by 2 orders of magnitude

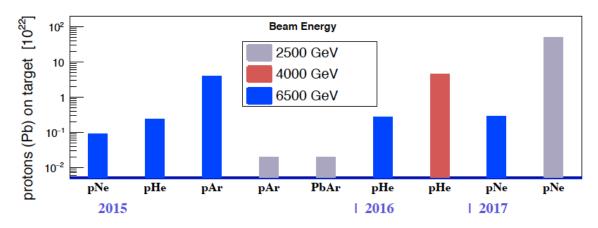


The LHCb fixed-target system

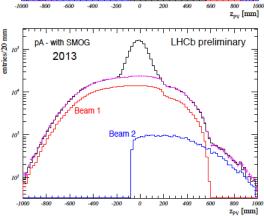
SMOG: System for Measuring Overlap with Gas:

- Low density noble gas injected in the VELO vessel ($\sim 10^{-7} \mathrm{mbar}$)
- Gas pressure 2 orders of magnitude higher than LHC vacuum
- Beam-gas collision rate increased by 2 orders of magnitude
- Conceived for precise luminosity determination (beam-gas imaging)

...but SMOG gives also the unique opportunity to operate an **LHC experiment in a fixed target mode** and to study pA and AA collisions on various targets!



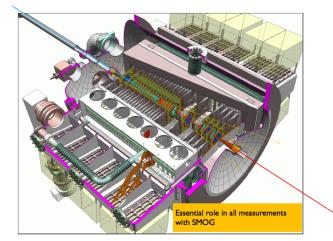
The LHCb fixed-target system

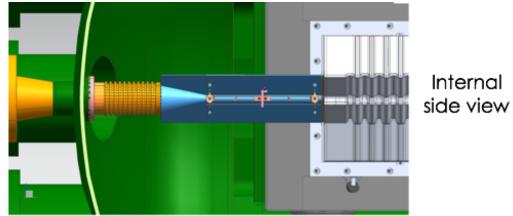

SMOG: System for Measuring Overlap with Gas:

- Low density noble gas injected in the VELO vessel (${\sim}10^{-7}{
 m mbar}$)
- Gas pressure 2 orders of magnitude higher than LHC vacuum
- Beam-gas collision rate increased by 2 orders of magnitude
- Conceived for precise luminosity determination (beam-gas imaging)

...but SMOG gives also the unique opportunity to operate an **LHC experiment in a fixed target mode** and to study pA and AA collisions on various targets!

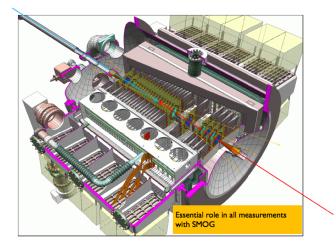
Distribution of vertices overlaid on detector display z-axis is scaled by npared to transverse dimensions to see the beam angle 2, Beam I - Gas, Beam 2 - Ga Beam 1 only Weighted sum Beam 2 only All collisions LHCb preliminary without SMOG 2013

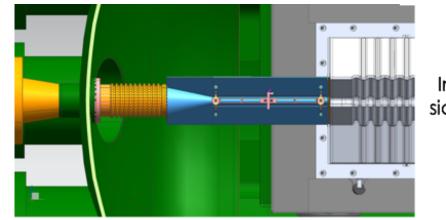

- First measurements of charm production in fixed-target configuration at the LHC, arXiv:1810.07907
- ✓ Measurement of antiproton production in pHe collisions at $\sqrt{s_{NN}} = 110$ GeV, arXiv:1808.06127



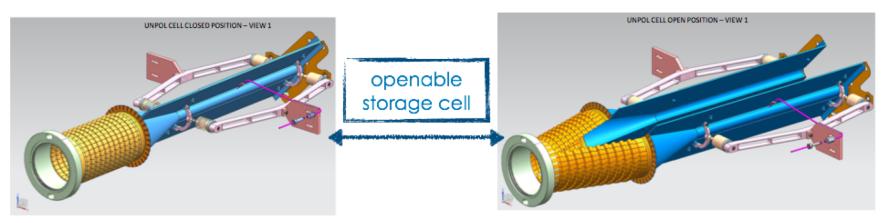
Phase I: the SMOG2 setup

The proposed SMOG2 setup





The proposed SMOG2 setup

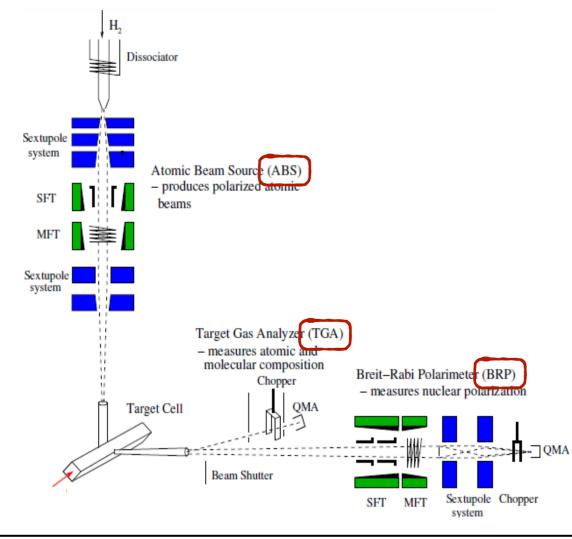


Internal side view

@ 7000 GeV @ 450 GeV

SMOG2 vs. SMOG

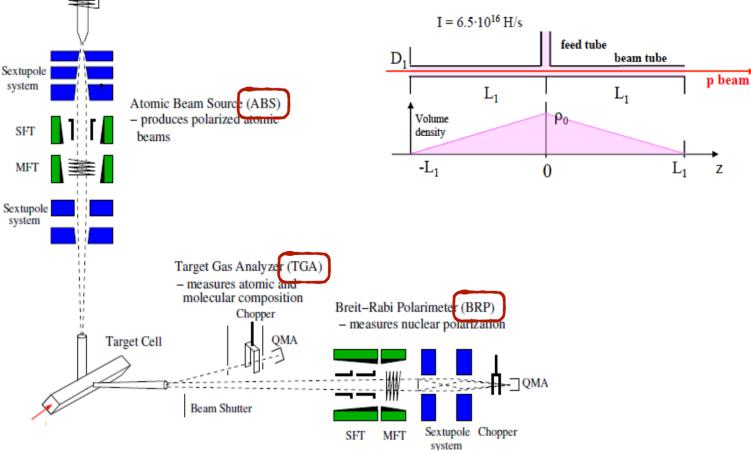
- ✓ Increase of target density (luminosity) by up to 2 orders of magnitude using the same gas load of SMOG ($\sim 10^{-7}$ mbar)
- ✓ Possibility to inject more gas species: H, D, He, N, Ne, Ar, Kr, Xe (SMOG: He, Ne, Ar)
- ✓ More sophisticated Gas Feed System: will allow to measure the target density with much higher precision (presently 50% uncertainty!)
- ✓ Well **defined interaction region** upstream of the IP@13 TeV (limited to cell length: 20 cm)
- ✓ SMOG2 can (in principle) **run in parallel with collider mode** (well displaced IP)



Phase II: the polarized target setup

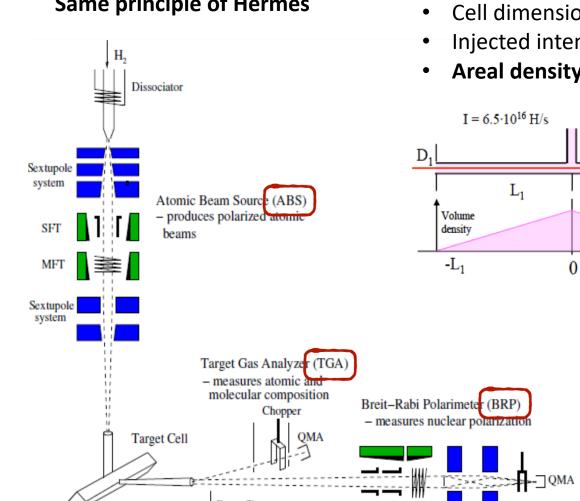
A new design for a compact polarized gas target

Same principle of Hermes

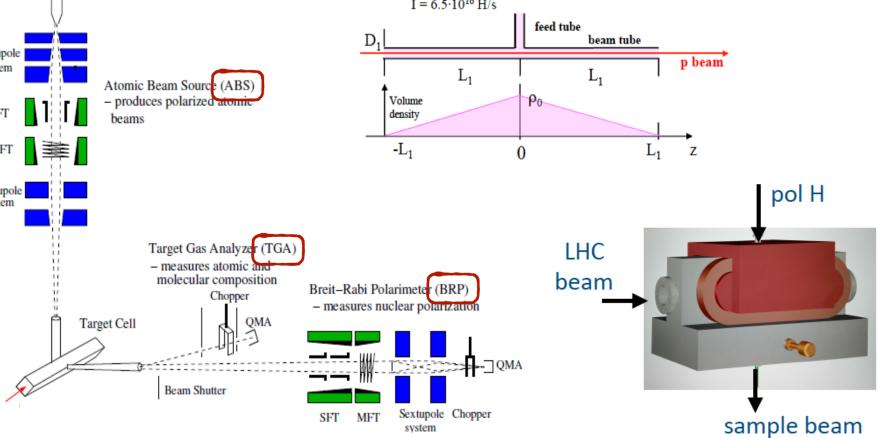


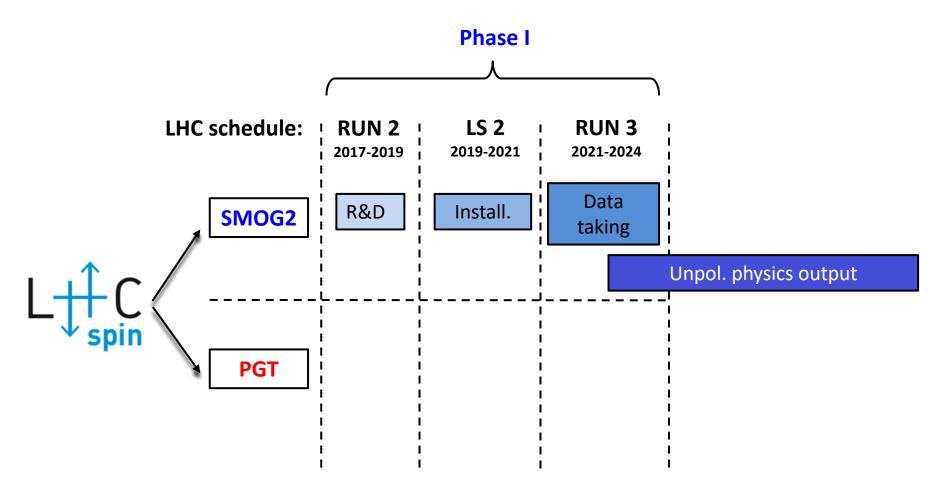
A new design for a compact polarized gas target

Same principle of Hermes

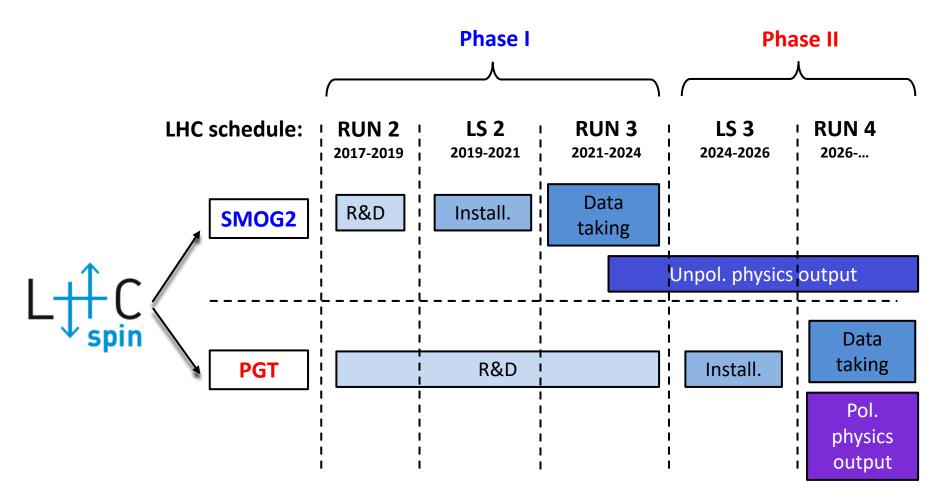

- Cell dimensions: 30 cm x 1 cm
- Injected intensity of H-atoms = $6.5 \cdot 10^{16} \text{ s}^{-1}$
- Areal density $\sim 1.2 \cdot 10^{14} \ cm^{-2}$

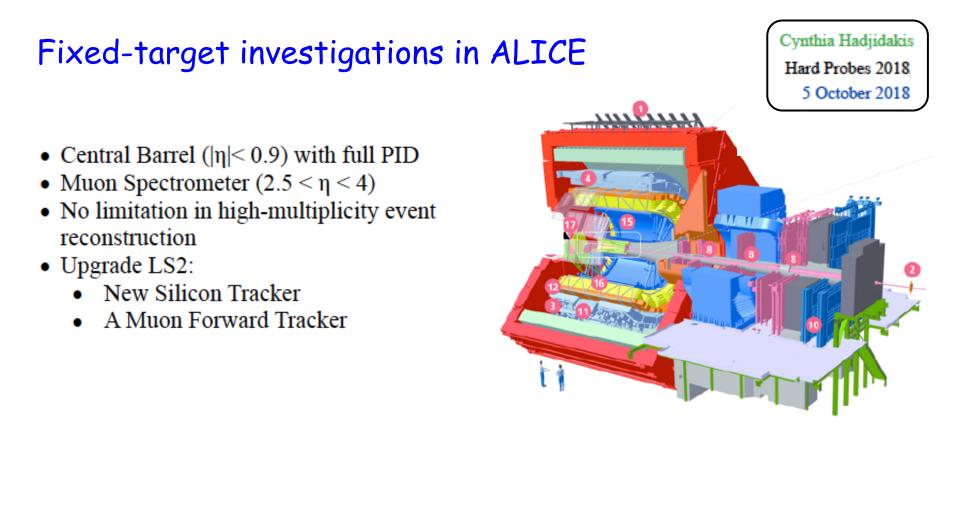
L.L. Pappalardo - Future opportunities in Hadron Physics for the EU Particle Physics Strategy - Mainz - Nov. 20 1018 50

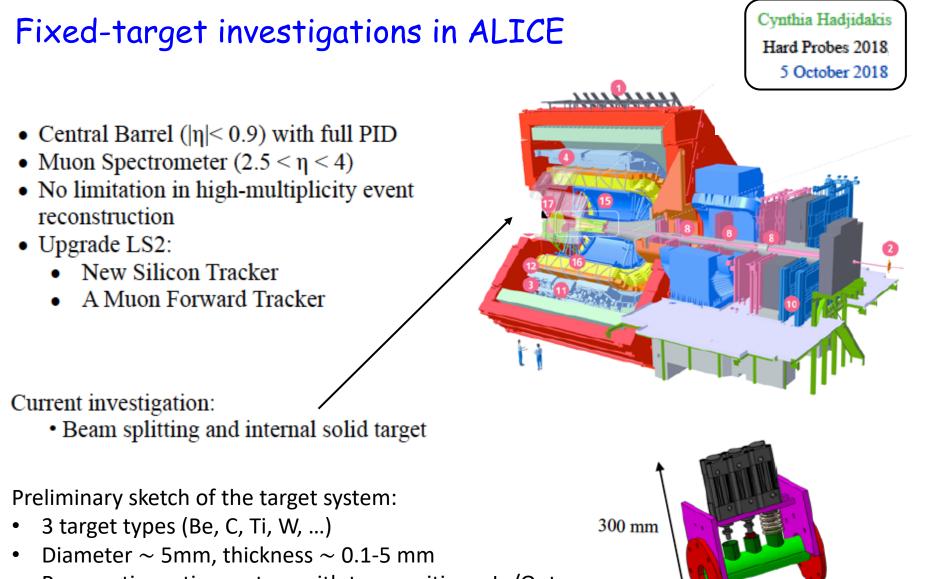

A new design for a compact polarized gas target


Same principle of Hermes

- Cell dimensions: 30 cm x 1 cm
- Injected intensity of H-atoms = $6.5 \cdot 10^{16} \text{ s}^{-1}$
- Areal density $\sim 1.2 \cdot 10^{14} \ cm^{-2}$


Time schedule of the project

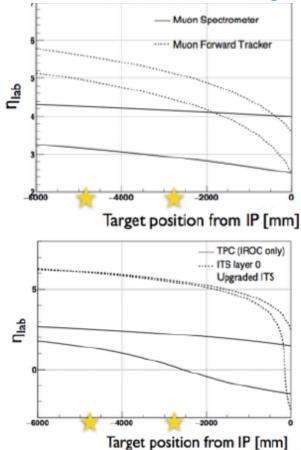




Time schedule of the project



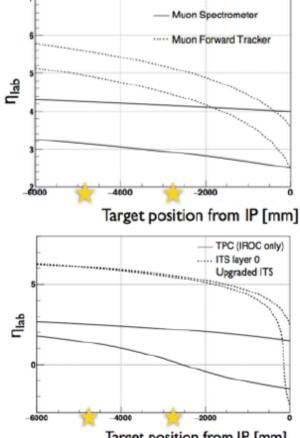
• Pneumatic motion system with two positions: In/Out


220 mm

55


Fixed-target investigations in ALICE

Detector acceptance vs ztarget

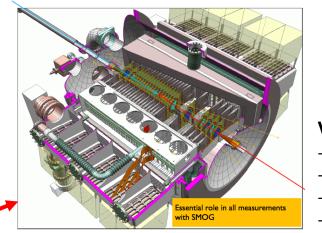

Fixed-target investigations in ALICE

Caveats:

- Disadvanteged by the cylindrical geometry of the main detector
- muon arm (+absorber) poorly instrumented and far from the IP
- there is no obvious place for the installation of an (un)polarised target
- Compatibility of proposed target types (Be, C, Ti, W, ...) with LHC conditions to be studied
- Compatibility of the target system with the operation of ALICE detectors to be verified

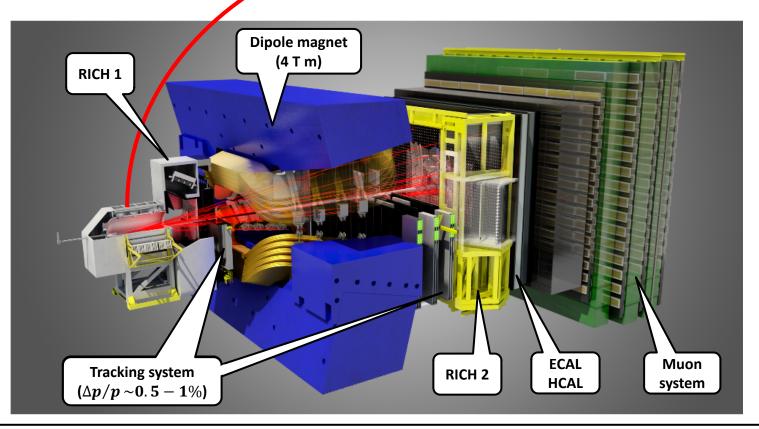
Detector acceptance vs ztarget

Target position from IP [mm]


Conclusions

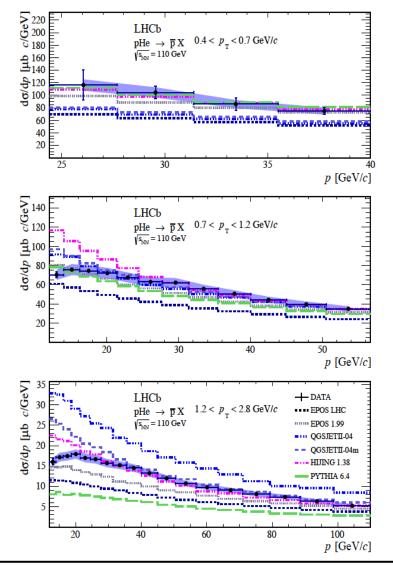
- A fixed-target experiment at the LHC will provide unique kinematic conditions for a broad and ambitious physics program!
- > A fixed-target physics program is already ongoing at LHCb with SMOG
- The LHCSpin proposal for an upgrade of SMOG is in advanced stage of R&D and well endorsed by the Collaboration. A formal approval by LHCb/LHC/CERN is expected by the beginning of next year and full installation by 2020.
- The polarized target option is also taken into serious consideration by the LHCb Collaboration and LHC machine experts! A review process has been initiated.
- Investigations for a solid target at ALICE are ongoing

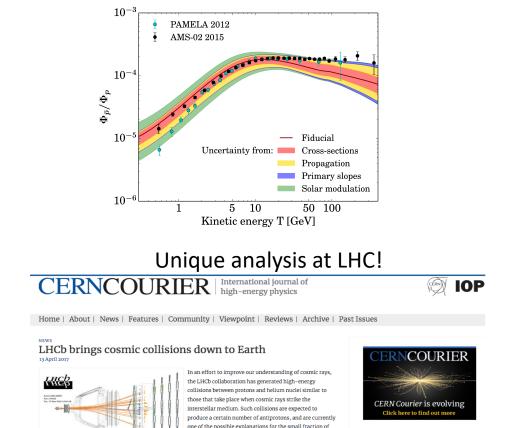
Backup


The LHCb detector

- A single-arm spectrometer designed for the study of particles containing c or b quarks
- Forward acceptance: $2 < \eta < 5$

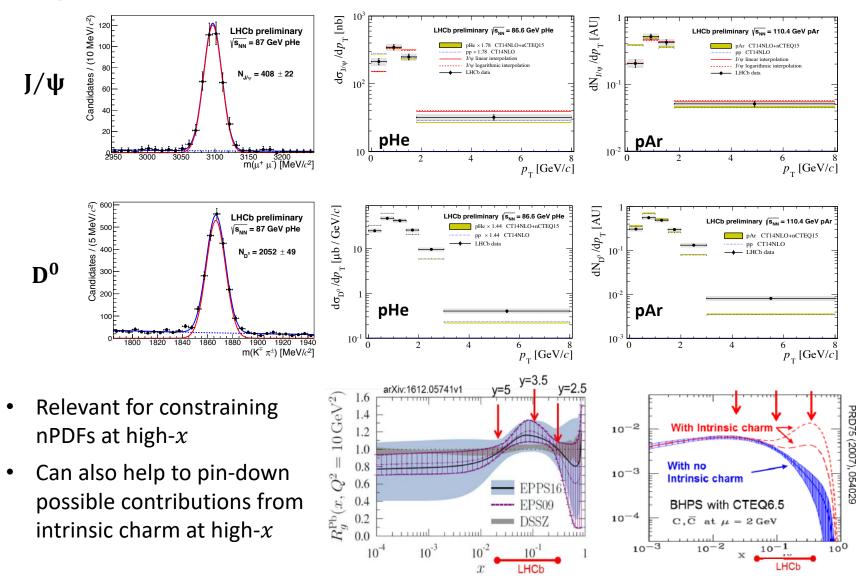
VELO (Vertex Locator)


- Vertex reconstruction
- IP resolution of 20 μm
- 21 stations of Si strip det.
- 2048 strips per sensor.

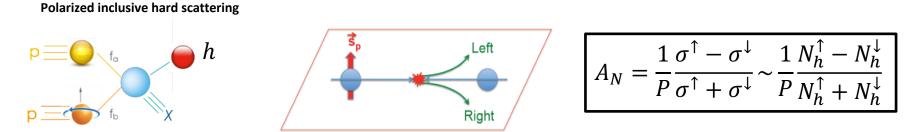

L.L. Pappalardo - Future opportunities in Hadron Physics for the EU Particle Physics Strategy - Mainz - Nov. 20 1018 60

First physics results with SMOG

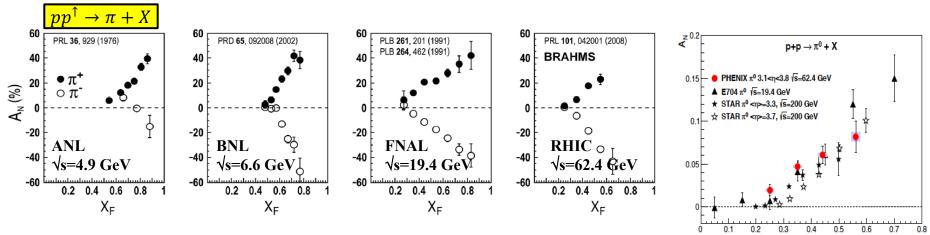
> First measurement of \overline{p} production in pHe collisions at $\sqrt{s_{NN}} = 110$ GeV arXiv:1808.06127


Relevant for cosmic-rays/DM physics: predictions for \bar{p}/p flux ratio from spallation of primary cosmic rays on interstellar medium (H and He) are presently limited by large uncertainties on \bar{p} production cross sections (especially from He)

antiprotons (about one per 10,000 protons) observed ir


First physics results with SMOG

 \succ J/ ψ and D⁰ production in pAr and pHe collisions LHCb-PAPER-2018-023 (in preparation)



STSAs in pp collisions

Main observables in pol. hadron collisions: Single Transverse Spin Asymmetries (STSAs)

LO collinear pQCD predicts $A_N \sim O(10^{-4})$ but asymmetries as large as 40% have been measured!

Very large asymmetries persistent with energy !

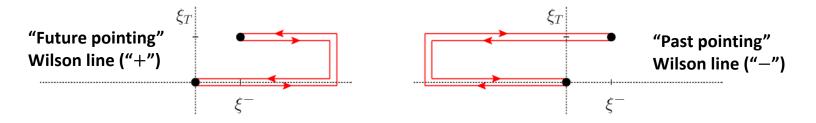
- Reproduced by various experiments over 40 years!
- Large asymmetries up to $\sqrt{s} = 500 \text{ GeV}$, where the applicability of pQCD issestablished.

STSAs in pp collisions

Collinear (twist-3) approach: (Efremov-Taryaev, Qiu-Sterman, Kanazawa-Koike)

- based on collinear QCD factorization (1 hard scale: works for p_T , $Q \gg \Lambda_{QCD}$)
- SSAs arise from interference between partonic amplitudes (3-parton correlators) generated by gluon exchange with IS or FS hadron

Non-collinear (leading-twist) approach: (Anselmino, Boglione et al.)


- involves TMD PDFs and FFs
- works in the limit $p_T \ll Q$ (2 energy scales), but is not supported by TMD factorization
- can be considered as an effective model description (Generalized Parton Model)
- SSAs arise mainly from Sivers effects
- > The two approaches correspond exactly in the overlap region $\Lambda_{QCD} \ll p_T \ll Q$ (proved for SSAs in Drell-Yan: Ji, Qiu, Vogelsang, Yuan, PRL, 2006)
- …very little is presently known about tri-gluon correlation functions and polarized gluon TMDs!

Process dependence

As for quark TMDs, also the gluon TMD phenomenology is enriched by the **process dependence** originating from ISI/FSI and encoded in the **gauge links**.

The gluon correlator depends on two path-dependent gauge links [D. Boer: arXiv:1611.06089]

$$\Gamma^{\mu\nu\left[\mathcal{U},\mathcal{U}'\right]}(x,\boldsymbol{k}_{T}) \equiv \int \frac{d(\xi\cdot P)\,d^{2}\xi_{T}}{(P\cdot n)^{2}(2\pi)^{3}}e^{i(xP+k_{T})\cdot\xi}\langle P|\mathrm{Tr}_{c}\left[F^{n\nu}(0)\mathcal{U}_{[0,\xi]}F^{n\mu}(\xi)\mathcal{U}_{[\xi,0]}'\right]|P\rangle$$

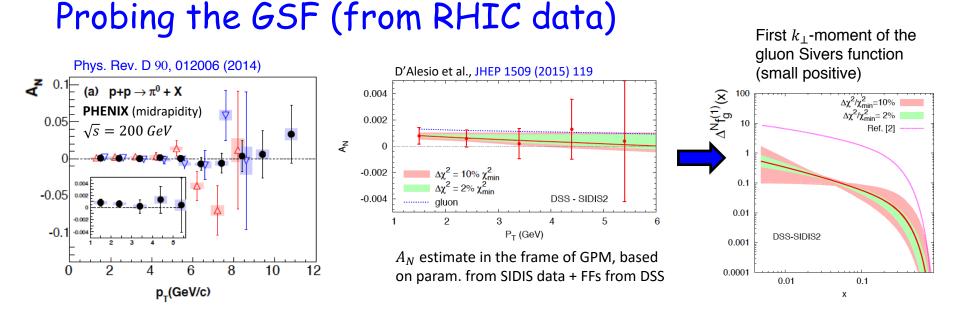
Both f_1^g and $h_1^{\perp g}$ are process dependent! Each of them can be of two types: [++] = [--] Weizsacker-Williams (WW) [+-] = [-+] DiPole (DP)

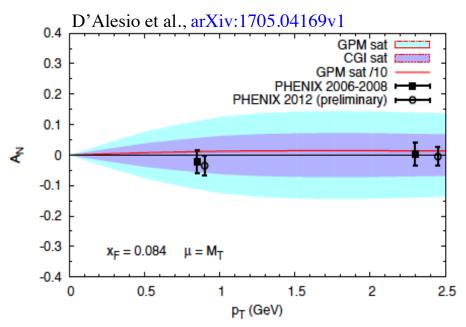
- can differ in magnitude and width (!)
- can be probed by different processes

Process dependence

Can be measured at the EIC

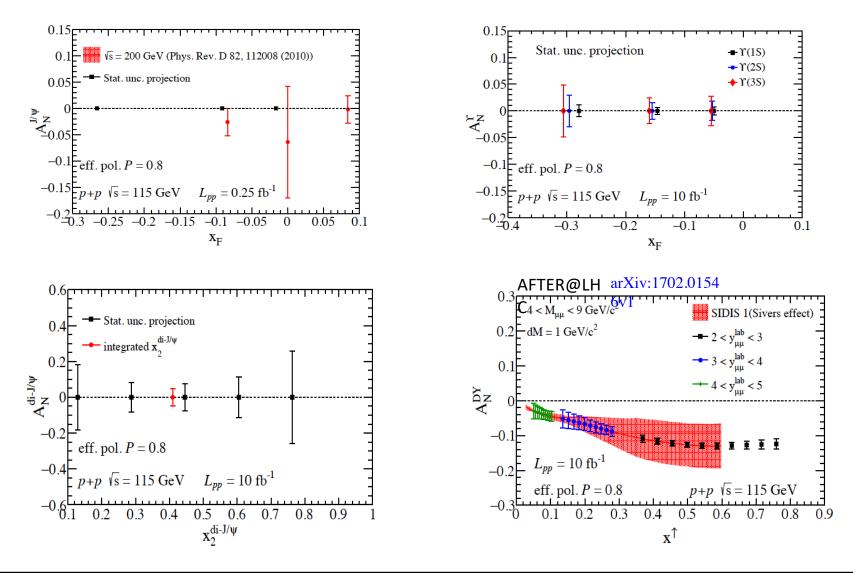
Can be measured at the LHC with FT


[D. Boer: <u>arXiv:1611.06089</u>]


	DIS	DY	SIDIS	$pA \to \gamma \operatorname{jet} X$	$e p \to e' Q \overline{Q} X$ $e p \to e' j_1 j_2 X$		$\begin{array}{c} pp \rightarrow J/\psi \gamma X \\ pp \rightarrow \Upsilon \gamma X \end{array}$
$f_1^{g[+,+]}$ (WW)	×	×	×	×	\checkmark	\checkmark	\checkmark
$f_1^{g[+,-]}$ (DP)	\checkmark	\checkmark	\checkmark	\checkmark	×	×	×

	$pp \to \gamma \gamma X$	$pA \to \gamma^* \text{ jet } X$	$e p \to e' Q \overline{Q} X$ $e p \to e' j_1 j_2 X$		
$h_1^{\perp g [+,+]} (WW)$	\checkmark	×	\checkmark	\checkmark	\checkmark
$h_1^{\perp g [+,-]} (\mathrm{DP})$	×	\checkmark	×	×	×

	DY	SIDIS	$p^{\uparrow}A \to hX$	$p^{\uparrow}A \to \gamma^{(*)} \operatorname{jet} X$	$p^{\uparrow}p \rightarrow \gamma \gamma X$	$e p^{\uparrow} \rightarrow e' Q \overline{Q} X$
					$p^{\uparrow}p \rightarrow J/\psi \gamma X$ $p^{\uparrow}p \rightarrow J/\psi J/\psi X$	$e p^{\uparrow} \to e' j_1 j_2 X$
$f_{1T}^{\perp g [+,+]} (WW)$	×	×	×	×	\checkmark	\checkmark
$f_{1T}^{\perp g [+,-]} (\mathrm{DP})$	\checkmark	\checkmark	\checkmark	\checkmark	×	X
$[+,+] \longleftrightarrow f_{1T}^{\perp g\left[ep^{\uparrow} \to e^{\prime} Q\bar{Q}X\right]}\left(x,p_{T}^{2}\right) = -f_{1T}^{\perp g\left[p^{\uparrow}p \to \gamma\gammaX\right]}\left(x,p_{T}^{2}\right) \longleftrightarrow [-,-]$						


Same sign-change relation expected for the other T-odd gTMDs h_1^g and $h_{1T}^{\perp g}$!

- Existing quarkonia results only from PHENIX
- ▶ First measurement of A_N for $pp^{\uparrow} \rightarrow J/\psi X$
- Sensitive to f-type gluon Sivers funciton
- > A very recent prediction of A_N from Color-Gauge Invariant GPM (CGI-GPM): takes into account the process dependence of the GSF

(projected results from AFTER@LHC arXiv:1702.01546v1)

Main reactions of interest

$$\begin{array}{c} & pp^{(\dagger)} \rightarrow \eta_{c} + X \quad (pp^{(\dagger)} \rightarrow \chi_{c,b} + X) \\ & pp^{(\dagger)} \rightarrow J/\psi + X \\ & pp^{(\dagger)} \rightarrow Y + X \\ & pp^{(\dagger)} \rightarrow J/\psi + J/\psi + X \\ & pp^{(\dagger)} \rightarrow J/\psi + \gamma + X \\ & pp^{(\dagger)} \rightarrow Y + \gamma + X \\ & pp^{(\dagger)} \rightarrow Y + \gamma + X \\ & pp \rightarrow \mu^{+}\mu^{-} + X \quad (pp \rightarrow e^{+}e^{-} + X) \\ & pd \rightarrow \mu^{+}\mu^{-} + X \quad (pd \rightarrow e^{+}e^{-} + X) \\ & pp^{\dagger} \rightarrow \mu^{+}\mu^{-} + X \quad (pp^{\dagger} \rightarrow e^{+}e^{-} + X) \\ & pd^{\dagger} \rightarrow \mu^{+}\mu^{-} + X \quad (pd^{\dagger} \rightarrow e^{+}e^{-} + X) \\ & & pA, PbA \quad (A = He, Ne, Ar, Kr, ...) \end{array} \right\}$$
 IF Nuclear matter effects, QGP, etc

We warmly encourage our theory colleagues to propose new physics cases and new reactions of interest for LHCSpin!

SMOG2 vs. SMOG

Storage cell	gas	gas flow	peak density	areal density	time per year	int. lum.
assumptions	type	(s^{-1})	(cm^{-3})	(cm^{-2})	(s)	(pb^{-1})
	He	1.1×10^{16}	1012	10^{13}	3×10^3	0.1
	Ne	$3.4 imes10^{15}$	10^{12}	10^{13}	$3 imes 10^3$	0.1
	Ar	$2.4 imes 10^{15}$	10^{12}	10^{13}	$2.5 imes10^6$	80
	Kr	$8.5 imes10^{14}$	$5 imes 10^{11}$	$5 imes 10^{12}$	$1.7 imes10^6$	25
SMOG2 SC	Xe	$6.8 imes10^{14}$	$5 imes 10^{11}$	$5 imes 10^{12}$	$1.7 imes10^6$	25
	H_2	$1.1 imes10^{16}$	10^{12}	1013	$5 imes 10^6$	150
	D_2	$7.8 imes10^{15}$	10^{12}	1013	$3 imes 10^5$	10
	O_2	$2.7 imes10^{15}$	10^{12}	1013	$3 imes 10^3$	0.1
	N_2	$3.4 imes10^{15}$	10 ¹²	1013	$3 imes 10^3$	0.1

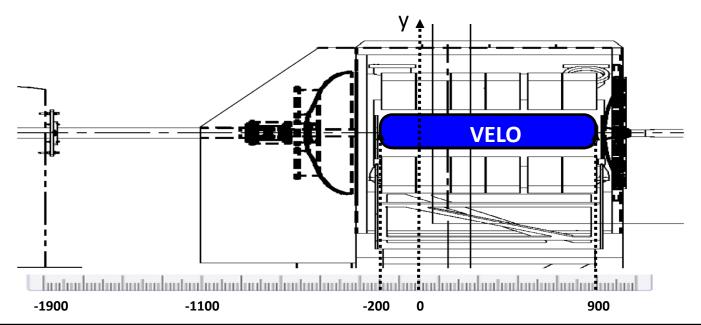
SMOG2 example pAr @115 GeV

Int. Lumi.	80/pb		
Sys.error of	of J/Ψ	xsection	~3%
J/Ψ	yield		28 M
D^0	yield		280 M
Λ_c	yield		2.8 M
Ψ'	yield		280 k
$\Upsilon(1S)$	yield		24 k
$DY \mu^+\mu^-$	yield		24 k

Expected performance for the PGT

- The LHC beam runs through the target cell and experiences an Areal density: $\theta = \frac{1}{2} \rho_0 L$
- Volume density: $\rho_0 = I_0 / (2C_1 + C_2)$ where: $C = 3.81 \sqrt{\frac{T(K)}{M} \frac{D^3}{L + 1.33D}} \left(\frac{l}{s}\right)$

 $I_0 = 6.5 \cdot 10^{16} s^{-1}$ $C_{tot} = 13.90 \text{ l/s}$ $\rho_0 = 4.68 \cdot 10^{12} / \text{cm}^3 \implies \theta = 7.02 \cdot 10^{13} / \text{cm}^2$


$$\begin{cases} N_{p/bunch} = 1.15 \cdot 10^{11} \\ N_{bunch} = 2800 \\ f_{rev} = 11245 \ Hz \end{cases} \implies I_{beam} = 3.6 \cdot 10^{18} \ s^{-1} \end{cases}$$

$$L(T_{cell} = 300 \text{ K}) = I_{beam} \cdot \theta = 2.5 \cdot 10^{32} \text{ cm}^{-2} \text{s}^{-1}$$
$$L(T_{cell} = 100 \text{ K}) = \sqrt{3} \times L(T_{cell} = 300 \text{ K}) = 4.4 \cdot 10^{32} \text{ cm}^{-2} \text{s}^{-1}$$

- > The pressure in the LHC beam pipe outside the target region would be $\sim 10^{-7}$ mbar, one order of magnitude lower than the maximum pressure allowed by LHC
- Parallel operation will cause marginal reduction of beam half-life!

There is some room beyond the VELO ...

The LHCSpin project

$L \stackrel{\uparrow}{\downarrow} C_{spin}$

A growing motivated collaboration:

Christian Baumaarten (PSI Zurich) Vito Carassiti (INFN and University of Ferrara) Giuseppe Ciullo (INFN and University of Ferrara) Pasquale Di Nezza (INFN Laboratori Nazionali di Frascati, LHCb) (IKP - Forschungszentrum Jülich) Ralf Engels Kirill Grigoryev (IKP - Forschungszentrum Jülich) Paolo Lenisa (INFN and University of Ferrara) Emilie Maurice (CNRS, Saclay, LHCb) (IKP - Forschungszentrum Jülich) Alexander Nass Luciano Pappalardo (INFN and University of Ferrara, LHCb) Frank Rathmann (IKP - Forschungszentrum Jülich) Davide Reggiani (PSI Zurich) Marco Statera (INFN and University of Milano) Erhard Steffens (University of Erlangen-Nürnberg) Michael Winn (CNRS, Saclay, LHCb)

Other groups from EU and US have informally expressed their interest in the project!