Hadron Physics from the Lattice

Mike Peardon School of Mathematics, Trinity College Dublin

Trinity College Dublin Coláiste na Tríonóide, Baile Átha Cliath The University of Dublin

20th November 2018

Mike Peardon (TCD)

Lattice Hadron PhysicsComputing

QCD on a lattice

- Discretise Euclidean space-time on a 4d-lattice.
- Matter fields on sites, gauge fields on links.

- Provides a non-perturbative regulator of the QCD path integral.
- Enables importance-sampling Monte Carlo calculations.

$$C(t_1-t_0) = \langle 0|\boldsymbol{\phi}(t_1)\boldsymbol{\phi}^{\dagger}(t_0)|0\rangle = \sum_{k} \left|\langle 0|\boldsymbol{\phi}|k\rangle\right|^2 e^{-E_k(t_1-t_0)}$$

$$\int \mathcal{D}\bar{\psi}\mathcal{D}\psi \ \psi_a\bar{\psi}_b \ e^{-\bar{\psi}M\psi} = [M^{-1}]_{ab} \det M$$

- Represent quarks in path-integral as Grassmann-valued fields.
- More numerically challenging to handle, both in importance sampling step and measurement of quark propagation.
- Advances in numerical methods and computer power mean we are now in the era of physically realistic calculations.

Connections

• Lattice practitioners typically work with experts in or have expertise in ...

- Significant expertise across Europe.
- Can we build stronger connections?

Physics projects

Structure and precision physics:

- **Parameters:** α_s , m_u , m_d , . . .
- Decay constants: f_B, f_{Ds}
- Nucleons: g_A , $\sigma_{\pi N}$, pdfs,
- Matrix elements for CKM, g-2

Beyond the standard model:

- Composite Higgs models
- Supersymmetry
- g-2 and precision tests
- Dark matter searches

Finite temperature and density:

- QCD phase diagram
- Transport properties
- Hadrons in hot, dense matter

Spectroscopy:

- Scattering and resonances
- Exotic hadrons, XYZs
- Internal excitations

Spectroscopy

- Until few years ago, spectroscopy meant energies of "stable" hadrons.
- Excited states via variational methods.

- Now hadron elastic scattering including coupled-channel and resonances.
- Developments in numerical methods and use of Lüscher formalism for elastic scattering.
- Extend these ideas to matrix elements, three-body, ...

Lüscher formalism

Recent review: Briceno, Dudek, Young (Rev.Mod.Phys 90 (2018) no.2, 025001)

- Lattice (Monte Carlo) calculations in Euclidean metric
- Lüscher: relate elastic scattering to the energy spectrum of field theory in a finite volume

Mike Peardon (TCD)

Coupled-channel $\pi\pi$, $K\bar{K}$

Taken from Briceno et. al. Phys.Rev.Lett 118 (2017) no 2, 022002

- Scattering amplitudes including coupled $\pi\pi$ and $K\bar{K}$
- $m_{\pi} = 391$ MeV (so σ stable)
- Extended to matrix elements, three-body formalisms ...

Future prospects

Near future? European lattice groups working on

- Precision tests of the standard model
- Strong interactions in other gauge theories (BSM)
- Hot, dense QCD
- Deeper understanding of the internal structure of hadrons
- Better connections to experiments?
- Where next?
 - Machine learning?
 - quantum computing?