Status Report on the Cherenkov Detector

From Cherenkov Module to Digitizer

Rahima Krini University of Mainz P2 Retreat Meeting June 2025

From SiO₂ Detector to Digitizer: Signal Processing via DivA Board (voltage Divider and preAmplifier Board)

Schematic overview of the PMT signal chain in the P2 experiment. Cherenkov light from the SiO₂ detector are detected by the PMT and amplified. The signals are digitized using a QDC in Single Event Mode or an ADC in Integrating Mode.

Open Tasks and Ongoing Work: Cherenkov Detector Ring

Cherenkov Detector Ring:

Fused silica detector (SiO₂)
 → Spectrosil 2000 by HERAEUS

- All 90 detectors are delivered \checkmark
- Lead shielding currently manufactured by $MTH\sqrt{}$
- Fixation: detector PMT
- No lead support structure available yet X
- Electronics housing still needed X
 → Needs to be finalized

CAD model of the lead ring

CAD model of a single PMT with mechanical mounting structure

Open Tasks and Ongoing Work: Cherenkov Detector

Cherenkov Detector:

- Fused silica detector (SiO₂)
 → Spectrosil 2000 by HERAEUS
- Mechanical detector support X
 → Needs to be finalized
- Wrapping detectors with Alanod 4300UP X

Two SiO₂ Cherenkov detectors wrapped in Alanod foil for optimized internal light reflection.

CAD model fixation structure of a detector

Open Tasks and Ongoing Work: PMTs

PMTs:

- 9305QKB PMT by ET Enterprises

 → max. cathode current: 200 nA
 → max. anode current: 100 µA
- All 300 PMTs are delivered \checkmark
- All 300 sockets are delivered \checkmark
- Gain characterization in SEM \checkmark
- Gain characterization in IM imes
- Light shielding: black shrink tube X
- EM shielding: Mu-metal 🗙
- PMT socket soldered onto DivA board X

PMT socket B14A/PCLF3 by ET Enterprises

Photomultiplier tube (PMT) 9305KB by ET Enterprises

5

PMT Voltage Divider Circuit and Readout Mode Switching

Voltage divider:

- Active voltage divider for PMTs with 10 (5) dynodes
- Combination of resistors, capacitors, Zener diodes, FETs

Preamplifier:

- SEM: fast, pulse-based amplifier (THS3202)
 - → Singled-ended output
 - \rightarrow Pulse readout via QDC
- **IM:** Transimpedance amplifier (AD8066)
 - \rightarrow Transimpedance stage (R_f =33 k Ω)
 - + differential output
 - \rightarrow Signal readout via P2ADC

Internal test current for IM mode

→ functionality check of IM amplifier chain → 4.5 V/ 200 kΩ

Configuration:

- SEM: D_{10} is last dynode; high gain operation
- IM: *D*₅ is last dynode; low gain operation
- 3R-R-R-R (R = 3.3 MΩ)

DAQ Mode Switching:

- MOSFET-based logic
- Voltage divider reconfiguration
 → Parallel MosFETs
- Dynode chain switching of $D_6 D_{10}$
 - \rightarrow Disconnected from chain
 - \rightarrow Reconnected to anode

Open Tasks and Ongoing Work: DivA board

DivA board:

- Voltage divider and preamplifier
 → DAQ Mode for SEM/IM
- Successful beam tests of DivA board \checkmark → Enabled determination of N_{PE}
- Successful radiation tests of DivA board √
 → Signal change of 4%@6300Gray
- Successful radiation tests voltage regulators
 → Shotlisted 1 type per application
- Radiation test of voltage regulators X
- Replacing resistor by Zener diode 🗙
- Production of DivA-boards X

Voltage divider and preamplifier (DivA) combined on one single PCB

Open Tasks and Ongoing Work: DAQ

DAQ:

- QDC: Charge to Digital Converter
 → Single Event Mode
- P2ADC: P2 Analog to Digital Converter
 → Integrating Mode
- QDC from CAEN \checkmark

 \rightarrow coaxial input (BNC)

P2ADC from MOLLER x 10 √
 → differential input (BNC- Twinax)
 → All 10 FGPA arrived √

A P2ADC (MOLLER)

Open Tasks and Ongoing Work: Cables

Cables:

DAQ SEM:

- Cable reels arrived \checkmark
- All BNC connectors arrived \checkmark
- Cable crimping and connector installation X

High Voltage:

- Cables there (A4) \checkmark
- HV-BNC connector to SHV X

Low Voltage:

- Low voltage supply (Igor)
- DIN-5 connector + cables X

DAQ IM:

- Twinaxial cables over 60 m are cost-prohibitive
 - → ~500 € per 30m cable
- IDEA:
 - -Differential signal from DivA board via Single Pair Ethernet (SPE) cable
 - -Four signal paths (4 boards) combined into one CAT-8 cable (4 twisted pairs) over 60 m
 - →Signals split again into individual SPE-to-Twinaxial paths (input P2ADC)
- Cable test for signaling path between DivA-P2ADC X

Open Tasks and Ongoing Work: Interconnecting *Low Voltage Power Supply + Relays*

Open Tasks and Ongoing Work

Experimental Setup and Measurement Program Overview

Experimental setup during beam time

Program	Prototype detector	PMT
Konfiguration A	Q_2	ET520
Konfiguration B	Q_1/Q_2	ET518/ET520
Konfiguration C	Q_1	ET518
Position Scan	Q ₁	ET518
Translation Offset	Q ₁	ET518
Rotational Angle Offset	Q ₁	ET518
PMT-Detector-Mix	Q_1/Q_2	ET518/ET520

Program	P2 detector	PMT
Konfiguration A	N ₂₀	ET873
Konfiguration B	N_{10}/N_{20}	ET923/ET873
Konfiguration C	N ₁₀	ET923
Position Scan	N ₁₀	ET923
Translation Offset	N ₁₀	ET923
Rotational Angle Offset	N ₁₀	ET923
PMT-Detector-Mix	N_{10}/N_{20}	ET923/ET873

Overview of the tested configuration and measurement series

Setup for Testing DivA boards

0

S

32.

136°

Prototype detector

650

SiO₂ detector (Spectrosil 2000) from company HERAEUS

 $(Q_1, Q_2), (N_{10}, N_{20})$

45°

65

200

Insight of the light-tight setup box.

Two detectors connected to DivA boards

Method: Signal Analysis in Single Event Mode (SEM)

Single Event Mode **Quarz Combination** (Landau Gaus)

Run:22995, Channel: 0

Single Event Mode Quarz Combination (Calculated)

Method: Signal Analysis in Single Event Mode (SEM)

$$QDC_{charge} = (ch_{mpL} - ch_{ped}) * \xi$$

=(862.577 - 118.647) * 200 fC ≈ 148.79 pC
$$N_{pe} = \frac{QDC_{charge}}{q_e * G_{pmt}} \approx \frac{148.79 \, pC}{1.602 * 10^{-19} \, C * 12.68 * 10^6} \approx 73$$

$$\Delta N_{pe} = \frac{1}{q_e} * \sqrt{\left[\frac{\Delta QDC_{charge}}{G_{pmt}}\right]^2 + \left[\frac{QDC_{charge} * \Delta G_{pmt}}{\left(G_{pmt}\right)^2}\right]^2} = \pm 8.5$$

Run:22995, Channel: 0

*from SPE measurement

Method: Signal Analysis in Integrating Mode (IM)

Integration Mode Quarz Combination (Photoelectron statistics)

Noise width and the photoelectron statistics

ToDo:

Plot in 3 different ways, to examine N_{pe} and comparing with SEM results

Amplifier output as a function of the electron beam current

Shot noise as a function of the electron beam current

Shot noise as a function of the amplifier output

Method: Signal Analysis in Integrating Mode (IM)

Integration Mode Quarz Combination (Photoelectron statistics)

Noise width and the photoelectron statistics

Method: Signal Analysis in Integrating Mode (IM)

Integration Mode Quarz Combination (Photoelectron statistics)

19

Monday, June 23, 2025

Run: 185, Channel: 1

Quarz Combination

Single Detector in Electron Beam Line Determination the number of photoelectrons N_{pe}

ET923 + P2 detector N10 PMT voltage = 790 V (nom. voltage) DAQ Trigger: Trigger scintillator Electron beam rate = 1 kHz – 15 kHz

ET923 + P2 detector N10 PMT voltage = 490 V (nom. voltage) Electron beam rate = 0 GHZ – 3 GHz Monday, June 23, 2025

20

Single Event Mode Rotation & Translation Gap

Rotation And Translation Gap between PMT And Detector Determination the number of photoelectrons N_{pe}

ET923 + P2 detector N10 ET518 + Prototyoe detectore Q1 Electron beam rate = 4 kHz

ET923 + P2 detector N10 ET518 + Prototyoe detectore Q1 Electron beam rate = 4 kHz

P2 detector N₁₀ & Prototype detector Q₁

Single Event Mode PMT-Detector Mix

Mixing The PMT – Detector Comination Determination the number of photoelectrons N_{pe}

PMT-Detector combination

Leaving the PMT fixed and swapping the quartz detectors

• (1.) Start with the PMT-Quartz combination for N10 like that what we have used to in the tests before

ET923 + N10 ET928 N10

(4.) Replacing quartz N10 with N20
 ET923 + N20
 ET923 N20

 (3.) Go on with PMT-Quartz combination for N20 like that what we have used to in the tests before

ET873 + N20 ET873 N20 (2.) Replacing quartz N20 with N10 ET873 + N10 ET873 N10

P2 detectors and Prototype detectors All PMTs are operated at their nominal voltages Electron beam rate = 4 kHz

Test of radiation hardness of the voltage divider and preamplifier

RadFET no. 1 (Test of Diva Board)

 Accumulated dose: 70 Gray (~ 30/01-19/02 at X1 beam dump)

Accumulated dose: 1600 Gray (~ 12/03-15/03 at A1 spectrometer)

- Voltage regulator are broken
- New types of regulators are built in
- From MOSEFET regulators MCP1702T5002E/MB (LDO +5V 250mA) XC6902N501PR-G (LDO -5V 200mA)

to **BIPOLAR** regulators

LM2940CT-5.0 (LDO +5V 1A) LM2990T-5.0 (LDO -5V 1A)

• Accumulated dose: 6300 Gray

- (~ 16/04-08/05 at A1 spectrometer)
 - Voltage regulator for 'OpAmps' and 'test current' are broken

RadFET no.2 (Test of voltage regulators)

- Accumulated dose: 16000 Gray (~ 19/06-07/07 at A1 spectrometer)
 - 24 voltage regulators are tested
 → 8 voltage regulators positive
 - \rightarrow 8 voltage regulators negative
 - \rightarrow 8 voltage regulators reference
 - Only 3 of 24 survived
 - → positive: LM1117SX-5.0
 - → negative: MC79M05
 - → reference: ADR03

Interconnecting DivA boards for Low Voltage Supply + Relays

Set of 3 PMTs

Experimental Setup and Measurement Program Overview

