Design of a luminosity monitor for the P2 parity violating experiment at MESA

Tobias Rimke

P2-Getaway

24 June 2025

Luminosity monitor prototype

- Air (cherenkov material) stored in a funnel
- Cherenkov light is reflected on the walls, covered by special aluminium reflector from Alanod
- Detector consists of two parts: an active part within electron beam and light guide protected by lead shield
- PMT placed at the end of light guide
- Analog integrating detector for high rate environments

P2 setup

- For main detector ring consisting of 72 fused silicia bars, 8 LUMI monitors
- LUMI monitors placed downstream
- Lead shield (9.88 t) around LUMI light guide and readout electronics

Geant4 rate distribution for LUMI monitors

Simulated rate distribution of physical processes hitting luminosity monitor at $z_{position}$, r distance from beam axis, with complete P2 setup and magnetic field of solenoid

Cathode current		• Annala	3 DMT	
Contribution	Sickle [nA]	Anode current(10)	gain) per Pivi i	
Elastic electron-proton scattering		10.5902 μA		
Primary electrons $\theta \notin [25 \text{ deg}, 45 \text{ deg}]$	g] 20.5274			-
Secondary electrons	0.1095	After 5144 h or (200 C at anode) a	ctive
Background reconstructions		run time I IIML P	MT output will tvi	vically
Electrons	63.3788		ini output win ty	Jicany
Positrons	0.6462	reduce by a facto	r of 50 % = 🛀 🖃	, •) <i>u</i> c
Tobias Rimke	Design of a luminosit	v monitor for P2	24 June 2025	3 / 10

FLUKA simulation LUMI

- LUMI (10 t) shield and LUMI-detector in Fluka simulation from Jürgen Diefenbach
- Equivalent radiation dose rate after 1000 h irradiation
- Spectrum directly after turning of beam
- The dose rate is averaged over 1 meter around beam axis

1 day cooldown

1 week cooldown

- Around beam axis $\approx 1 \text{ mSv/h}$ "" $\approx 0.1 \text{ mSv/h}$
 - Not much radiation from beam dump around LUMI electronics

FLUKA simulation LUMI

Total dose rate in Sv/h at 150 microA around LUMI PMT shielding

- Radiation around PMT and DIVA board < 10 Sv/h</p>
- Fluka: Absorbed energy dose on LUMI detector readout electronics: $8 \cdot (8 \cdot 9) \cdot 0.1 cm^3 = 57.6 cm^3$
- $D = 0.0233 \, Gy/h \rightarrow D[10^4 h] = 233.2284 \, Gy$
- Main detector Si ring with volume: $\pi \cdot (1332 1202) \cdot 0.1 cm^3 = 1033.2698 cm^3$
- $D = 0.2037 \, Gy/h \rightarrow D[10^4 h] = 2037.2677 \, Gy$

Characterization of LUMI spectra in beam test at MAMI

- Verficiation of single photoelectron spectra
- In both measurement mods

Operative voltage=950V, electron rate \approx 5 kHz

 $Mean(offset \ correc.) = -5.631 \cdot 10^{-3} V$ $ADC_{value}(theo.)[NPE.] = 5.024 \cdot 10^{-3} V$

ELE NOR

Rate scan in integration mode

- Rate scan 0-3 GHz
- Mean ADC pedestal corrected

Rate scan at HV=900 V

Mean ADC vs beam rate at HV=900 V

- Questions about left tail in spectra
- Originates at high operative voltages
- Moran single photon test in black box ightarrow internal electronics ("saturation") unlikely

LUMI prototype and implementation in experimental hall

- Development of a concrete LUMI prototype
- Got an expert on this project: Paul Schöner
- 8 holes in exit beamline?? vacuum-air pressure, metal distorts
- Suggestions: small LUMI beam line section, additional reinforced beam line

Tobias Rimke

Design of a luminosity monitor for P2

24 June 2025 8 / 10

LUMI prototype and implementation in experimental hall

- LUMI divided in two parts: Main Cherenkov part-light guide
- Main Cherenkov part: Completely welded sits in vacuum
- Light guide: several sheets held together by screws
- Two parts divided Helicoflex flange

Tobias Rimke

Design of a luminosity monitor for P2

LUMI prototype and implementation in experimental hall

- Lead shield (9.88 t) exists only in simulation
- No shield design, no mounting for shield, offer from a company
- How to implement lead shield in P2 setup??????
- How to remove parts of shield to access PMTs???
- Replace mirrors time intervall??

Thank you for your attention!

Tobias Rimke

Design of a luminosity monitor for P2

Tracking background electrons

- 950e6 beam electrons
- ${\small \bullet}~\approx$ 40e6 Geant4 particles passes by 8 LUMI detector
- \approx 4e6 Geant4 particles produce Cherenkov Light (energy threshold)
- 23 Geant4 particles reach 8 LUMI PMT-windows

FLUKA simulation LUMI

- LUMI (10 t) shield and LUMI-detector in Fluka simulation from Jürgen Diefenbach
- Equivalent radiation dose rate after 1000 h irradiation
- Spectrum directly after turning of beam
- The dose rate is averaged over 1 meter around beam axis

Beam turned off

1 day cooldown

- Around beam axis \approx 10 mSv/h Around beam axis \approx 1 mSv/h
 - Not much radiation from beam dump around LUMI electronics

LUMI spectra integration mode HV scan

- For operative voltage > 500 V, a LUMI tail appears at higher ADC values
- Beam rate: 3 GHz, 2 GHz, 1 GHz, 0 GHz

- No significant MAMI beam fluctuations
- Origin?? backscattered electrons from beam dump

LUMI spectra integration mode HV scan

- For operative voltage > 500 V, a LUMI tail appears at higher ADC values
- Plot measured ADČ value vs run time intervall [ms]

Quartz: 3GHz, HV=490 V

Design of a luminosity monitor for P2

24 June 2025 5 / 19

LUMI spectra integration mode HV scan

Plot Quartz vs LUMI spectrum

Ch0 Quartz, Ch1 LUMI

LUMI: HV=900 V

LUMI: HV=600 V

LUMI: HV=500 V

24 June 2025 6 / 19

PMT ET 9305QKB

- PMT voltage divider A
 R=3.3 MΩ

8 voltage divider distribution									
A B	3R 3R	R R		R R	R 2R	R 3R	R 4R	R 3R	Standard High Pulsed linearity

$\label{eq:maximum ratings:} \\ anode current \\ cathode current \\ gain \\ sensitivity \\ temperature \\ V (k-a)^{(0)} \\ V (k-d1) \\ V (d-d)^{(2)} \\ \end{cases}$	μA nA x 10 ⁶ A/Im °C V V V V	-30	100 200 3 200 60 2700 450 300
ambient pressure (absolute)	kPa		202

- Datasheet max voltage 1700 V for norminal A/Im
- Integration mode 1-5 dynodes instead of 1-10 ۰
- For test beam in integration mode use HV=900V

Electrode	Integration mode=900 V [V]	Pulse mode=1462 V [V]
Cathode	337.5	337.38
1	112.5	112.46
2	112.5	112.46
3	112.5	112.46
4	112.5	112.46
5	112.5	112.46
6	0	112.46
7	0	112.46
8	0	112.46
9	0	112.46
10	0	112.46

LUMI prototypes

• Compare LUMI prototypes "L-Form"" and "Sickle"

- Both detectors similar results in simulations and test beam times
- Both versions usable for P2

Tobias Rimke

三日 のへの

∃ ⊳

- A II.

Position scan in integration mode

- LUMI prototype lying on moving table
 Change horizontal, vertical distance between electron beam and PMT
 Beam: 3 GHz, HV: 900 V

Position scan in integration mode

- LUMI prototype lying on moving table
 Change horizontal, vertical distance between electron beam and PMT
 Beam: 3 GHz, HV: 900 V
 Determine Mean ADC(x,y)

Tobias Rimke

Design of a luminosity monitor for P2

Position scan in integration mode

• Combine both measurements into single plot

Design of a luminosity monitor for P2

24 June <u>2025</u>

-

11 / 19

Position scan for sickle and L

- Compare position scan for both detector types
- Histogram same binning ۰

Mean ADC [-1 V]

Sickle

Tobias Rimke

Design of a luminosity monitor for P2

24 June 2025

-

12 / 19

L-Form

- Question about influence of beam position deviation on LUMI ADC signal
- Beam position deviation $\Delta X = 1$ mm in the target
- False asymmetries results from deviations in $\Delta X = 1$ mm and $\Delta X = 0$ mm

100 mm beam posiiton deviation in Geant4 as an example

- Combine simulated rate distribution on detector and ADC position scan from beam time → resulting in ADC-signal for each LUMI
- ("less statistic dependency from production of Cherenkov photons and reflection on funnel walls")

= nar

Effects of beam position deviations

- To analyse beam position deviations $\Delta X = 1 \ mm$ combine simulation and beam time results
- Initial assumption was point of entry of the beam onto the detector would have a strong influence
- Simulation = particle rate, beam time = ADC value depending on beam position
- Beam time rate $3 \cdot 10^9 1/s$, \rightarrow ADC value per signal electron

Mean ADC [-1 V]

X-Y hit distribution Geant4 simulation

Beam time integration position scan results

 $LUMI_{ADC}$ signal(x, y)[V] = Rate(x, y) \cdot ADC(x, y)/3 \cdot 10^{9}

ELE NOR

False asymmetries from beam position deviations

- Compare particle rate for $\Delta X = 1$ and $\Delta X = 0$
- Only particles with energy ≤ 21 MeV, air Cherenkov threshold
- Margin of error $1/\sqrt{N}$, N number of simulated entries, statistic error

 $Asym.(1) = 1.7147 \cdot 10^{-2} \pm 4.7225 \cdot 10^{-4}$ $Asym.(2) = 2.1622 \cdot 10^{-2} \pm 4.5881 \cdot 10^{-4}$ Asym.(3) = $1.1972 \cdot 10^{-2} \pm 4.7392 \cdot 10^{-4}$ $Asym.(8) = 1.9753 \cdot 10^{-3} \pm 4.6286 \cdot 10^{-4}$ $Asym.(4) = -5.4848 \cdot 10^{-3} \pm 4.6489 \cdot 10^{-4}$ $Asym.(5) = -1.7062 \cdot 10^{-2} \pm 4.809 \cdot 10^{-4}$ $Asym.(6) = -2.2654 \cdot 10^{-2} \pm 4.6677 \cdot 10^{-4}$ $Asym.(7) = -1.1029 \cdot 10^{-2} \pm 4.7974 \cdot 10^{-4}$

Tobias Rimke

Design of a luminosity monitor for P2

24 June 2025 15 / 19

- Determine asymmetries for each LUMI detector for [1/s,1V]
- Plot asymmetries depending on polar coordinate angle ("Octo-Angle") $\Phi\in 0^\circ....315^\circ$

- Detector geometry (beam position dependency) no significant influence
- $\bullet\,$ For rate asymmetries [1/s] for each LUMI statistical margin of error $\approx 4.5\cdot 10^{-4}$
- Asymmetries error for each LUMI during P2 for 10^4 h $pprox 1.5\cdot 10^{-10}$

Tobias Rimke

• To test the linearity of the false asymmetries from beam deviations ightarrow simulation for $\Delta X=$ 0.1mm

24 June 2025

17 / 19

- To test the linearity of the false asymmetries from beam deviations ightarrow simulation for $\Delta X=$ 0.1mm
- Plot for each LUMI the asymmetries for $\Delta X = 1$ mm and $\Delta X = 0.1$ mm
- For each LUMI linear slope fit

- MESA max. beam location difference at target 1 nm
- Asymmetry calculation (1 nm) estimation from fit parameters

Asym.(1) = $1.718 \cdot 10^{-8}$ Asym.(4) = $-5.5271 \cdot 10^{-9}$ Asym.(2) = $2.1725 \cdot 10^{-8}$ Asym.(5) = $-1.7092 \cdot 10^{-8}$ Asym.(3) = $1.1993 \cdot 10^{-8}$ Asym.(6) = $-2.2656 \cdot 10^{-8}$ Asym.(8) = $1.9669 \cdot 10^{-9}$ Asym.(7) = $-1.1003 \cdot 10^{-8}$

EL OQO

19 / 19