Beam raster for P2

P2 Retreat June 24, 2025

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

Tyler Kutz

Why raster the beam?

- → mitigate temperature increase, density fluctuations, melting
- Modulate beam parameters \rightarrow study beam-correlated asymmetries

• Spread power deposition (several kW) over larger area on the target

Raster for JLab Hall A

- Pair(s) of raster magnets (vertical and horizontal)
- 5x5 mm² on target
- Raster magnet length = 25 cm
- Raster drift length:
 - \approx 23 meters (nominal)
 - ≈ 15 meters (MOLLER)
- Driven by 25 kHz triangle wave

Red illustrates raster path for part of cycle Black shows full pattern for each helicity state

Current required to drive JLab raster

Nominal (\approx 23 meter "drift")

- Two pairs of raster coils, intermediate quads
- 50 A (horizontal)
- 34 A (vertical)

Nominal (\approx 23 meter "drift")

- Two pairs of raster coils, intermediate quads
- 50 A (horizontal)
- 34 A (vertical)

raster

MOLLER (\approx 15 meter drift):

- One pair of raster coils, degaussed quads
- 80 A (horizontal & vertical)
 - Coil temp 64° C (insulation max 130° C)

Considerations for P2 raster

- Same size as MOLLER raster (5x5 mm²)
 - At target entrance? Center?
- Raster drift length
 - Long segment before P2, but where is last accelerator component?
- Raster magnet length and current
 - Recycle existing magnets? Purchase new ones?
 - P2 momentum only 1.4% of MOLLER momentum ...nearly 100x reduction in rigidity

