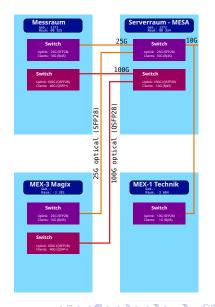
Data recording system

22

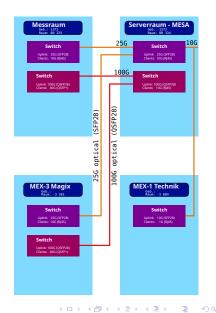
0

...

ATT 11


9

21


Network

- Idea: Two networks with different speeds
- Data network
 - Fast connection between switches (up to 100G, optical, higher speed possible)
 - 40G connection with SADCs possible
 - 10G connection as alternative for SADC connection
 - 10G connection to server
 - Data connection for BASKET
- Control network
 - 25G connection between switches (optical)
 - Up to 10G connection to server, PCs, equipment, ...

Network - Current status

- Plan for the network structure available
- 2 optical fibre cables in place
 - Connection: Server room \Leftrightarrow MAGIX bunker
 - Multimode (OM5) with 12 fibres each
 - $ightarrow\,$ 6 network links per cable possible
 - $\bullet~$ No connectors yet \rightarrow splicing needed
- Control network:
 - Should they be POE (power over ethernet) capable?
- Data network:
 - Open question: connection for SADC 40/10G?
- Switches, optical fibre cables, ethernet cables, various tranceivers (100G, 40G, 25G, 10G) could be ordered

24.06.2025

3/11

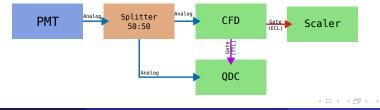
Computing - Server

- Ubuntu server 24.04 LTS running on all servers
 - 6 DB / Event builder
 - AMD EPYC 7232P (8 Cores)
 - 64 GByte RAM
 - 2 TByte SSD, 16 TByte zfs-mirror (RAID-1)
 - $2 \times 10 G RJ45$ network connection
 - 1 analysis server
 - AMD EPYC 7352 (24 cores)
 - $\bullet~384\,\mathrm{GByte}$ RAM
 - 2 TByte SSD, 64 TByte zRAID2 (RAID-6)
 - $2 \times 10 G RJ45$ network connection
 - 1 storage server
 - AMD EPYC 7232P (8 Cores)
 - $\bullet~192\,{\rm GByte}$ RAM
 - 2 TByte SSD, 120 TByte zRAID2 (RAID-6)
 - 2x 10G RJ45 network connection
 - 2 Uninterruptible Power Supplies installed
 - $\bullet~$ Capacity: $6000\,\mathrm{W}$
 - 1G RJ45 network connection
- \Rightarrow Total disk space (with out SSD): 280 TByte
- \Rightarrow Total number of CPU cores: 80 (160 Threads)

Computing - Control room

- 5 Intel NUC with two displays each available
 - Intel Core i5-1340P (4P + 8E cores)
 - $\bullet~16\,\mathrm{GByte}$ RAM
 - $\bullet~0.5\,\mathrm{TByte}~\mathsf{SSD}$
 - 2.5G RJ45 network connection
- Runing Ubuntu 24.04 LTS
- Common user account distributed via LDAP (Lightweight Directory Access Protocol)

Data storage


- $\bullet~\mbox{For 11.000}\,h$ hydrogen data
 - $\bullet~{\rm Estimated} \sim 1\,{\rm PByte}$ of disk space needed
 - Including: SADC (Quartz, Lumi, Halo, Beam monitoring, Polarisation), QDC, Asymmetries
- $\bullet\,$ Long term storage for $\sim 2\,{\rm PByte}$ needed
- Buy storage from ZDV
 - Contract for 5 years, renewal needed afterwards
 - Storage on disk and tape
- Alternative: Use own storage server
 - Tape storage could be realised together with KPH IT
 - 2/3 server with large raid systems (Master, Backup, (HIMSTER))
 - $\bullet~$ HIMSTER II has 60 \times 10 $\rm TByte$ disks per tray
 - PRIMA is already using a large RAID system
 - Trays/Storage server from HIMSTER II might be available after upgrade

• MESA will use EPICS for distributing/collecting information from the accelerator

- $\Rightarrow\,$ EPICS based slow control needed
 - Hardware with EPICS support (e.g. CAEN HV)
 - $\rightarrow~$ Easy to be implemented
 - Hardware without EPICS support (e.g. solenoid)
 - $\rightarrow\,$ Input Output Controller needs to be developed
 - Control system for P2 needs to be developed
 - Web based frontend
 - DOCKER Container for each controler (Ravis Master thesis)
 - PRIMA has developed similar system

Tracking mode - readout

- Self triggering system for each quartz bar
- Using new CAEN VME crate
 - \Rightarrow Selftriggering successfully tested during test beam August 2024
 - \Rightarrow First test of new readout of QDC/CFD/Scaler
- Current Status:
 - VME Server
 - Split into different processes (Communication, QDC, Scaler, CFD, SQL, Status)
 - Currently tested with PMT like pulses from function generator (self triggering)
 - Event builder
 - Listen/Record to data from server process
 - $\bullet~$ Separated for Scaler and QDC
- Possibility to provide trigger signals for each quartz bar via ECL signal

8/11

Tracking mode - readout

- Self triggering system for each quartz bar
- Using new CAEN VME crate
 - \Rightarrow Selftriggering successfully tested during test beam August 2024
 - \Rightarrow First test of new readout of QDC/CFD/Scaler
- Current Status:
 - VME Server
 - Split into diffferent processes (Communication, QDC, Scaler, CFD, SQL, Status)
 - Currently tested with PMT like pulses from function generator (self triggering)
 - Event builder
 - Listen/Record to data from server process
 - Separated for Scaler and QDC
- Possibility to provide trigger signals for each quartz bar via ECL signal

Integration mode - readout

- Data structure:
 - For each helicity window: $t, \mu, \sigma, \sigma^2, N_{Samples}, \min, \max$
 - Same values also for 4 sub windows
 - Decission for storage format (ROOT, HDF5, TXT,...)
- TI-boards
 - 3 Boards available \Rightarrow up to 16 Connections
 - Synchronisation, run start, individual delays for each connection
 - $\bullet\,$ Require at least a ${\cal T}_{\rm stable}$ signal from source
- All 10 SADC boards and FPGA modules delivered
 - Firmware developement for SADC ongoing
 - Two different versions for TI-board communication and optical data transfer
 - Testing of optical fibre connection ongoing (currently only 1G)
 - Calculation of mean values, signal width... not implemented, yet
- Software developement needed

- Development of a Helicity generator (Quadruplets,...)
- Discussion with Anselm and Jürgen
 - Anselm developed an FPGA based version of A4 electronics
 - Consists of two parts (Master and source front end)
 - Developed together with electronics workshop
 - $\bullet\,$ Includes De Bruijn Sequence for same amount of $+ \rightarrow -$ and $\rightarrow +$ transisions
 - We got the schematic from Anseln for these boards
- Develop helicity generator based on this design together with electronics workshop
- Possibility to include TI-firmware on the FPGA for syncronisation with P2-DAQ

- Analysis methodes / Programs for asymmetry calculation need to be developed
 - Linear regression algorithms from A4 exists
 - $\bullet\,$ Need to be adapted to P2
 - Testing of algorithms needed
- Analysis methods for calulation of weak mixing angle need to be developed
- Include possibility for blind analysis
 - Provide only calculated asymmetries for each quartz bar instead of measured currents
 - Add additinal artificial offset to asymmetry
 - Cancels out for linear regression
 - \Rightarrow Unblinding by subtracting the offset