P2-Overview

2025/06/24 P2 Retreat

0.0

Outline

- P2 setup
- Fused silica bars
- Photomultiplier
- High voltage supply
- Detector support
- Superconducting coil
- Valve box

- Vacuum chamber
- Detector readout
- Computing
- Liquid hydrogen target
- Hydrogen buffer
- Gas Handling
- HAZOP/HAZID

P2: CAD drawing

Spectrometer: 72 Detector modules

Spectrometer: Fused silica bars

- •
- Measurement of the • dimensions finished

100% delivered (90 pieces) • False asymmetries due to thickness variations are small (=> Jayanta)

Spectrometer: Photomultiplier

- 100% delivered (300 pieces)
- Testing and characterization almost completed (~90%)

High voltage supply

- Manufacturer: CAEN
- A 7030N modules
- Output voltage max. 3.5 kV
- 144 channels in total
- Order 06/2021, Delivery 03/2022

- Multipin to SHV, 50 m included
- 23 m HV cables from A4 available: SHV to HV-BNC
 - => Change from HV-BNC to SHV?

Spectrometer: Detector support

- Final design
- Can be 3D printed
- Four test copies were ordered
- Second iteration: New test copies have been ordered?
- 72 copies ~ 20 k€

Superconducting coil

Manufacturer: Sigmaphi, Vannes

Delivery date:

- December 2021
- December 2022
- May 2023
- November 2023
- March 2024
- September 17, 2024

October 31, 2024

November 21, 2024

Superconducting coil

Manufacturer: Sigmaphi, Vannes

- Final work by Sigmaphi
 - Put into stand (March 2025)
 - Laser tracker measurement (May 2025)
 - Next visit: This week?
- Final steps:
 - Turret installation August 2025
 - Cool down October 2025
 - Final payment December 2025

Cryogenic supply

Installation of cryogenic infrastructure in the MESA halls (CryoWorld) ongoing

Cryogenic supply: Valve box

Height ~ 2.5 m

Ø1.3 m

- Ordering: December 2023
- Manufacturer: CryoWorld
- Final design report December 2024
- Installation: June 2025 July 2025

Vacuum chamber

- Tender in July 2023 was succesful
- Manufacturer: NTG (Gelnhausen)

Vacuum chamber

• Delivery April 10, 2025

Vacuum system

Delivered January 2024:

- 3 turbomolecular pumps (*HiPace 700 H from Pfeiffer Vacuum*)
- 3 scroll pumps (*HiScroll 18 DN from Pfeiffer Vacuum*)
- Additional equipment

Detector readout

P2 DivA board

- 10 dynodes of the PMT in SEM
- 5 dynodes of the PMT in IM
- Fixed test current at the input of preamplifier

SEM: QDC basic parameters

- QDC CAEN V965
- 12 bit resolution
- 25 fC LSB and 200 LSB

IM: Sampling ADC basic parameters

 FPGA based; Dynamic range of +/- 4.096 V

the Fused Silica Cherenkov Detector

- 18-bit resolution, (Sensitivity: $\frac{8V}{2^{18}} = 30,5 \ \mu V$)
- 15 MSps

DivA Boards

Design of DivA boards almost final. Open questions:

- Voltage regulators: Evaluation by electronic workshop was done
- Suggestions for a suitable solution
- Additional radiation test in preparation

Different voltage regulators are tested of radiation hardness

Single event mode: QDC

- QDC CAEN V965, 5 pieces delivered in September 2023, together with VME crate and CPU
- 80 readout channels in total
- First beam tests in August 2024 succesful

Integrating mode: Sampling ADC

- Developed by U Manitoba/Triumf (MOLLER, P2)
- 16 channels per board
- 10 FPGA (SoC Mercury+ XU1/Enclustra) separately ordered and delivered (May 2024)

Integrating mode: Sampling ADC

• All 10 boards delivered from U Manitoba on April 25, 2025

Luminosity monitors

- Air Cherenkov detectors
- Møller electrons and small angle elastic scattering
- Placed 4.9 m behind the target

Computing

Delivered in November 2023:

- 6 servers for data processing, 1 server for data storage,
- 1 multicore server for analysis, 5 NUKs for the counting room

- IT equipment for the counting room
- Online analysis
- Short term storage (100 Terabyte)

Not included here:

- Long term storage (1-2 Petabyte)
- Backup
- Routers

Liquid hydrogen target

- Compressors delivered: October 2023
- Cold box delivered: January 2024
- Manufacturer: Linde Kryotechnik AG
- Provides cold helium gas to cool the liquefied hydrogen target
- Design parameter:

Cooling power	4.2 kW
Inlet temperature	15 K
Inlet flow pressure	2.7 bar
Return temperature	19 К
Return flow pressure	1.2 bar

Hydrogen buffer

- 90 m³ volume
- Pressure up to 3 bar
- Ordered at J.H.K Engineering
- Delivery June 20, 2025

This photo is NOT for Ilustration purposes only

Hydrogen buffer

Liquid hydrogen target: Gas Handling

Design of the gas handling system and hazard assessment is underway Negotations about where to put the gas handling panel are ongoing

- Hazard and Operability Study (HAZOP):
- a systematic method for
- analyzing technical systems
- and processes to identify
- potential hazards and operability problems.

Hazard Identification (HAZID):

a systematic method for identifying potential hazards in a process or system. Often used in the early planning phase to identify and assess risks.

- Guided by CSE Engineering GmbH (*Center for Safety Excellence*)
- Done for the whole institute (A1, A2, MAGIX, P2)
- Two dedicated sessions for P2:
 - o April 9, 2024
 - \circ October 17, 2024
- Additional sessions for an explosion protection document (P2 only):
 - o March 25, 2025
 - April 1, 2025
 - \circ Further information exchange via email

The HAZID process consists of

- Hazard identifications
- Consequences
- Protective measures
- Recommendations

The preliminary document for P2 consists of 11 pages ... =>

Leitwort	Ursache	Konsequenzen	АТ	Vor-Maßnahme			Schutzmaßnahmen	N Ma	Nach aßna men	Empfehlungen
			¥	s	L	R		s	LF	
2.1 Gefährli- che Stoffe	2.1.1 Wasserstoff ist ein leicht- entzündliches Gas Explosionsgefahr bei Kontakt mit Luft	 2.1.1.1 Leckage von Wasserstoff nach außen Bildung von gea mit Umgebungsluft: Am Tank An der Verbindungsleitung Bei Befüllen des Tanks In der Halle (siehe Verbindungsleitung) 					 28 Tank und Verbin- dungsleitung werden auf Dauer technisch Dicht i.S.d. TRGS 722 ausgeführt 29 ggf. ExZone um Befüllstutzen des Was- serstofftanks 			24 Es sollte geprüft werden, ob die Pumpen für die Erzeugung des Isoliervakuums für die Förderung von Wasserstoff geeignet sind.
		 2.1.1.2 Innere Leckage von Wasserstoff Am Targetloop: Freisetzung von Wasserstoff ins Isoliervakuum, Absaugung durch Vakuumpumpen. Kein Sauerstoff in der Streukammer, keine geG, mögliches unzureichendes Vakuum in der Streukammer, siehe 2.2.7.1 								
		2.1.1.3 Betriebliche Freisetzung von Wasserstoff: Gelegentliche Freisetzung bei Entleerung des Target- loops (ca. 1x im Monat, 90l bei Behälterdruck) via Vakuumpumpe					30 Zone 1 um den Auslass			25 Es sollte ein geeigneter Ort für den Aus- lass festgelegt, die Zonenausdehnung berech- net und eine Zündgefahrenbewertung durch- geführt werden. Wenn eine Fackel vorhanden ist könnte der Strom darüber gefahren wer- den.
										26 Es sollte geprüft werden, ob für Freiset- zungen von Wasserstoff (MAGIX, P2) eine Fa- ckel angeschafft werden kann.
										62 Es sollte geprüft werden, ob der Inhalt des Targetloops mit einer Vakuumpumpe in den Tank gefördert werden kann. In diesem Fall müsste nur das Kontaminierte Spülgas entsorgt werden.
		2.1.1.4 Freisetzung von Wasserstoff in die Streukammer: Targetloop ist undicht oder platzt. Kein Sauersoff in der Streukammer, keine geG, mög- liches unzureichendes Vakuum in der Streukammer, siehe 2.2.7.1					31 Freisetzung an ei- nen sicheren Ort (Zone 2)			25 Es sollte ein geeigneter Ort für den Aus- lass festgelegt, die Zonenausdehnung berech- net und eine Zündgefahrenbewertung durch- geführt werden. Wenn eine Fackel vorhanden ist, könnte der Strom darüber gefahren wer- den.
		für die Streukammer: Mögliche Bildung einer geA in der Abluftleitung und am Auslass in die Atmosphäre. Zündung in Anwesenheit einer Zündquelle. Gefähr- dung von Personen durch Wärmestrahlung und Druckwellen.								24 Es sollte geprüft werden, ob die Pumpen für die Erzeugung des Isoliervakuums für die Förderung von Wasserstoff geeignet sind.

Leitwort	Ursache	Konsequenzen	AT	Vor-Maßnahme			Schutzmaßnahmen		Nach- Maßnah men		Empfehlungen
			×	s	L	R	Centre	s	L	RR	
		2.1.1.5 Freisetzung aus Druckentlastungseinrich- tungen. Mögliche Bildung einer geA in der Abblaseleitung und am Auslass in die Atmosphäre. Zündung in Anwesen- heit einer Zündquelle. Gefährdung von Personen durch Wärmestrahlung und Druckwellen.					31 Freisetzung an ei- nen sicheren Ort (Zone 2)				25 Es sollte ein geeigneter Ort für den Aus- lass festgelegt, die Zonenausdehnung berech- net und eine Zündgefahrenbewertung durch- geführt werden. Wenn eine Fackel vorhanden ist könnte der Strom darüber gefahren wer- den.
2.2 Störungen des Betriebs	2.2.1 Überdruck im Targetloop	2.2.1.1 Thermische Expansion im Targetloop: Bei Ausfall der Kühlung wird der Druck im Targetloop ansteigen. Da der Targetloop bei Normalbetrieb mit dem Tank verbunden ist, wird sich maximal der nor- male Betriebsdruck (gesamtes System bei Raumtem- peratur) einstellen. Eine Überschreitung des zulässi- gen Drucks wird somit nicht erwartet.									
		2.2.1.2 Aufbau eines Überdrucks im Targetloop ist möglich, wenn der Targetloop zum Tank abgesperrt ist (Armatur ungewollt geschlossen). Platzen des Targetloops und Freisetzung von Wasserstoff in die Streukammer, siehe 2.1.1.4									36 Die Armatur zwischen Wasserstofftank und Targetloop sollte ggf. mithilfe eines Stel- lungsgebers überwacht werden, um ein kaltes Einblocken des Targetloops zu vermeiden.
		2.2.1.3 Pumpe fördert gegen geschlossene Leitung: z.B. bei Einfrieren des Wärmeübertragers Druckanstieg im Targetloop auf den maximalen Pum- pendruck.									37 Es sollte geprüft werden, ob ein Einfrieren des Wärmeübertragers möglich ist und ob die Pumpe einen Druck aufbauen kann, der größer ist als der Auslegungsdruck des Targetloops.
		2.2.1.4 Thermische Expansion (innerhalb des Tar- getloops) Keine Szenarien gefunden (Keine Armaturen, kein plausibles Einfrierszenario)									
	2.2.2 Überdruck im Tank	2.2.2.1 Unterfeuerung: Für einen Brand im Bereich des Tanks konnte kein realistische Szenario gefun- den werden. Brandlasten und brennbare Flüssigkei- ten werden nicht erwartet.					32 Brandlasten im Bereich des Tanks wer- den vermieden.				
		2.2.2.2 Thermische Expansion: Hohe Außentemperaturen und Sonneneinstrahlung									38 Druckanstieg bei Sonneneinstrahlung sollte in der Auslegung des Wasserstofftanks berücksichtigt werden.
		 2.2.2.3 Unzulässiger Druckanstieg bei Befüllen des Tanks: – Druckminderer zu hoch eingestellt (Fehlbedienung) -Membranriss am Druckminderer 									39 Es sollte ein Druckminderer verwendet werden, der nicht über den maximalen Ar- beitsdruck des Behälters eingestellt werden kann

Explosion protection document (Explosionsschutzdokument)

- Needed for the building application
- The process appears to be nearing completion

