
Tools for Physicists: Boost your Analysis
with High Performance Computing (HPC)

Hands on Trivial Parallelisation, Peter-Bernd Otte, 7.5.2025

Lecture Today

• Course webpage: https://indico.him.uni-mainz.de/event/235/

• Part of “Tools for Physicists” series:
https://www.hi-mainz.de/tfp

Talk (30´)

• Motivation for High Performance Computing (HPC)

• Cluster building blocks

• Trivial Parallelisation

Quiz (5’)

Hands on (60´)

https://indico.him.uni-mainz.de/event/235/
https://www.hi-mainz.de/tfp19

Lecture Today - Feedback

Very helpful:

1. survey: https://indico.him.uni-
mainz.de/event/235/

2. interrupt me during the talk at any
time

https://indico.him.uni-mainz.de/event/235/
https://indico.him.uni-mainz.de/event/235/

Intro: Trivial Parallelisation

• todays course covers only trivial parallelisation and skips theory
→ see lecture: “Parallel Programming with OpenMP and MPI”
https://gitlab.rlp.net/pbotte/learnhpc

• Basic principle: run your existing analysis N times in parallel

time

https://gitlab.rlp.net/pbotte/learnhpc

Intro: Trivial Parallelisation

• todays course covers only trivial parallelisation and skips theory
→ see lecture: “Parallel Programming with OpenMP and MPI”

• Basic principle: run your existing analysis N times in parallel

→ How do we get there?

time

Intro: Running in parallel

Your analysis consists of 100 files to analyse

• On your desktop computer:
$./myAnalysisExec InputFile1.dat OutputFile1.dat

• 8 cores:
./myAnalysisExec InputFile1.dat OutputFile1.dat &

./myAnalysisExec InputFile2.dat OutputFile2.dat &

...

Intro: What can be done on HPC

• All office computer applications

• No direct graphics output!

Additional:

• more of everything: storage, RAM, CPUs, GPUS

• fast, lossless interconnect

Intro: Worked out example

building of a house

• 1 worker = 1 year

• 3 workers = 4 months

• 9 workers = ?

→ Scaling?

Intro: Amdahl’s Law

• Given a program consisting of a non-parallelisable
and a perfectly parallelisable part

• Fraction s of the non-parallelisable part:
T(p)=Tseq + Tpar(p) = T(1) * s + T(1) * (1-s)/p

• Speed-up: S(p) = (1+(1-s)/p)-1

• p → inf: S(p) = 1/s

• If S(p) > 1/s → “super-scaler speedup”, problem fit’s into
CPU cache.

ideal (s=0)

Why High Performance
Computing (HPC)?

HPC out of distributed desktop computers?

• FLOPS / computer (floating-point operation per second):
• FLOPS = f × Ncores × Ninstr per cycle

• Intel E5-2670 (2,6 GHz, 8 cores): 2,6GHz × 8 × 8 = 166,4 GFLOPS

• Ncomputers: 200 (=25 offices / floor, 4 floors, 2 people / office, 1 computer / person)

• 33TFLOPS cluster “for free”  HIMster2+Mogon2: 2801TFLOPS

Drawbacks:

• OS: Windows (20%), MacOS (20%), Linux (50%) other (10%) – all on a different version level

• Temperature in office rooms, closed window, 15th July: 0W = 29°C, with 400W = 50°C
(simulated with: www.thesim.at)

• Network: 1GBit/s, Backbone 10GBit/s (HIMster2: 100GBit/s)
• 10GBit/s / 200 computers / 8 cores = 780kByte/s
• Compare bisection bandwidth (minimal accumulated bandwidth between any bisections of the

network): fat tree  binary tree

• Storage?

• No node checks, difficult to maintain, reduced availability

bisection bandwidth

http://www.thesim.at/

Why HPC?

• Intense computational problem → single desktop computer not capable enough

• Run on a “super computer“
1. <2002: fast single core super computer

2. Since 2002: parallel systems as super computers

→Why parallel systems?

The Era of
Moore’s Law

• 1900-2000

• source: Wikipedia

https://upload.wikimedia.org/wikipedia/commons/c
/c5/PPTMooresLawai.jpg

Moore‘s Law

• observation:
number of transistors
doubles every ~2a.

• no natural law

• still valid

Cramming More Components onto IC (1965):
ftp://download.intel.com/sites/channel/museum/Moores_Law/Articles-
Press_Releases/Gordon_Moore_1965_Article.pdf or

https://ieeexplore.ieee.org/document/658762?tp=&arnumber=658762

Source: wikipedia

ftp://download.intel.com/sites/channel/museum/Moores_Law/Articles-Press_Releases/Gordon_Moore_1965_Article.pdf
ftp://download.intel.com/sites/channel/museum/Moores_Law/Articles-Press_Releases/Gordon_Moore_1965_Article.pdf

Single-Core Performance

The single core-
performance increased by

• <2002: 50%/a

• >2002: 20%/a

Speedup after 10a:

• <2002: ~6000%

• >2002: ~600%

Simply wait for the next
CPU release is not enough
any longer.

“Dennard scaling”:

smaler→ less power/gate
→ higher f possible ☺

CMOS leakage
current! 

Answer: Multi core

little
core

big core
little
core

little
core

little
core

little
core

little
core

little
core

little
core

little
core

little
core

little
core

little
core

little
core

little
core

little
core

little
core

little
core

little
core

little
core

little
core

little
core

< 2002 > 2002

With „Dennard Scaling” Without „Dennard Scaling”

Moore‘s Law scaling with cores

little
core

big core
little
core

little
core

little
core

little
core

little
core

little
core

little
core

little
core

little
core

little
core

little
core

little
core

little
core

little
core

little
core

little
core

little
core

little
core

little
core

little
core

< 2002 > 2002

With „Dennard Scaling” Without „Dennard Scaling”

Recap: Trivial Parallelisation and Multicore
systems
• No drawback using a multi core machine

• We have single independent jobs
• Assign single analysis runs to single cores

little
core

little
core

little
core

little
core

Input file 1

Input file 2

Input file 3

Input file 4

Recap: Trivial Parallelisation and Multicore
systems
• No drawback using a multi core machine

• We have single independent jobs
• Assign single analysis runs to single cores

→We are on the right path, so let’s dive in.

little
core

little
core

little
core

little
core

Input file 1 Input file 2

Input file 3 Input file 4

HPC building blocks

What is High Performance Computing (HPC)

• Basic building blocks are:
1. compute nodes (~1000)
2. fast interconnect (1x)
3. parallel file system (1x)
4. login node (1x)

• Software:
• organised in modules
• batch system

• Usage remotely, non interactively

node node node node

FS

login

Building Blocks: Compute nodes

HIMster II Specs
• 320 Compute Nodes (256 theory, 64 experiment) in 8 racks

• dual socket Intel 6130 @ 2.1GHz (à 16 cores)
• 3GB RAM /core
• OmniPath 100 Gbit/s interconnect
• 400 GB local SSD scratch
• https://docs.hpc.uni-mainz.de/docs/cluster/compute-nodes/

• HIMster II and Mogon II form a compound state
• share login nodes, maintenance servers

• situated in HIM computing room, 660kW
• 2PFlops

https://docs.hpc.uni-mainz.de/docs/cluster/compute-nodes/

Building Blocks: Storage

• Parallel File System (experimentalists): ~1PB Lustre volume
• /l1fs/him/
• 90% fill limit!

• Pros:
• Better performance due to load distribution
• Scalability (performance & volume)
• Redundancy

• Cons:
• Overhead, Complex, Unintuitive, …

Lustre design – Components

• Management server/target (MGS/MGT)
• Central configuration, mounting on clients,

locking

• Metadata server/target (MDS/MDT)
• Translates files/directories to object ids
• Takes care of metadata information that is

usually placed in an inode

• Object storage server/target (OSS/OST)
• Stores object data on medium
• Data transfer to clients

• MDTs and OSTs can be added as neccessary

Lustre design – Architecture

Building Blocks: Software

Options:
1. Install any software in your home dir

2. organized in modules
• eg: module avail; module module load lang/Python/3.6.6-foss-2018b

• See: https://docs.hpc.uni-mainz.de/docs/scientific-computing/using-modules/

3. More via nfs mount: /cluster and /cluster/him

4. User containers (Apptainer)

https://docs.hpc.uni-mainz.de/docs/scientific-computing/using-modules/

Building Blocks: Login nodes

• Connect via SSH to login nodes

• Login nodes of “Mogon 2” and “Himster 2” are shared

• home directory: quota 50 GB
• Access from outside via SSH or Samba

• More info: https://docs.hpc.uni-mainz.de

• Rules apply: https://www.en-zdv.uni-mainz.de/regulations-for-use-of-
the-data- center/

https://docs.hpc.uni-mainz.de/
https://www.en-zdv.uni-mainz.de/regulations-for-use-of-the-data-%20center/
https://www.en-zdv.uni-mainz.de/regulations-for-use-of-the-data-%20center/

Building Blocks: Batch System

• Batch system, introduces fair share: SLURM
• Accounts (e.g. m2_himexp, m2_himkurs, etc.)

• Queues
• Reservations

• Introduction and docu:
• https://docs.hpc.uni-mainz.de/docs/running_jobs/using-slurm/
• script generator: https://docs.hpc.uni-mainz.de/script_engine/

• https://slurm.schedmd.com/tutorials.html

• Today:
• account to use: m2_himkurs
• Reservation: him-kurs

• Submit into partition: himster2_exp
• srun --pty -p himster2_exp -A m2_himkurs --reservation him-kurs bash -i

• Check what is running: squeue -h | grep $USER

• 1184615_79 parallel N203r001 pbotte R 1:00:40 52 z[0367-0386,0403-0413,0430-0450]

• SSH login into your occupied nodes possible: eg ssh z0367

• only for debugging, do not launch analysis tasks!

https://docs.hpc.uni-mainz.de/docs/running_jobs/using-slurm/
https://docs.hpc.uni-mainz.de/script_engine/
https://slurm.schedmd.com/tutorials.html

SLURM scheduler: Multifactor Priority
re

so
u

rc
es

time

https://slurm.schedmd.com/priority_multifactor.html

1

2

3

4

Batch System: SLURM

• Submit script for later execution (batch mode)
• sbatch --partition=himster2_exp

• Create job allocation and start a shell to use it (interactive mode)
• salloc -p himster2_exp -N 1 --time=02:00:00 -A m2_him_exp

• srun: Create a job allocation (if needed) and launch a job step (typically MPI job)
• srun --pty -p himster2_exp -N 1 --time=02:00:00 -A m2_him_exp
bash -i

• sattach: Connect stdin/out/err for an existing job

• Why does my job not start?
• https://docs.hpc.uni-mainz.de/docs/running_jobs/using-slurm/
• scontrol show jobid -dd <jobid>

https://docs.hpc.uni-mainz.de/docs/running_jobs/using-slurm/

Sample Submit Script

1. Define and reserve
resources (nodes with
RAM)

2. Once allocated, run the
executables as defined
or interactively

More examples:

https://docs.hpc.uni-
mainz.de/docs/running_jobs/
job-examples/

Or ask LLM

#!/bin/bash

#SBATCH -o /home/pbotte/test/myjob.%j.%N.out

#SBATCH -D /home/pbotte/test/

#SBATCH -J MyJobName

#SBATCH -A m2_him_exp  account (NOT your account)

#SBATCH -N 1  Request number of nodes

#SBATCH --partition=himster2_exp  partition

#SBATCH --mem-per-cpu=1G

#SBATCH --mail-type=FAIL

#SBATCH --mail-user=pbotte@uni-mainz.de

#SBATCH --time=8:00:00  wall time (>run time)

module load gcc/6.3.0

echo TEST...

srun myExecutable

Submit with: sbatch submitScript.sh

https://docs.hpc.uni-mainz.de/docs/running_jobs/job-examples/
https://docs.hpc.uni-mainz.de/docs/running_jobs/job-examples/
https://docs.hpc.uni-mainz.de/docs/running_jobs/job-examples/

Trivial Parallelisation

• Submit a single core job multiple times

• Quick and often only solution for large software blobs (large packages used in collaborations)
• No principal difference compared to running on your desktop computer

• limits:
• required RAM (3GB/core)

• licensees (Mathematica, max 10 concurrent usages in university for such uses cases)

• shared scratch (under “/localscratch”) in node (200GB)

• parallel filesystem (loading at start, writing back results) max. → 10-100 jobs in parallel

• Hint: use job arrays
• https://mogonwiki.zdv.uni-mainz.de/dokuwiki/start:working_on_mogon:workflow_organization:job_arrays

• or ask your LLM: “write a slurm batch file using job arrays to process my 10 data files, with only 5 running in parallel.”

https://mogonwiki.zdv.uni-mainz.de/dokuwiki/start:working_on_mogon:workflow_organization:job_arrays

Script
generator

• https://docs.hpc.uni-
mainz.de/script_engine/

• or: LLM

https://helmholtz.cloud

https://docs.hpc.uni-mainz.de/script_engine/
https://docs.hpc.uni-mainz.de/script_engine/
https://helmholtz.cloud/

LLM for batch
script
generation

• Adjustment needed

HIMster II: Info and do’s

• Per core memory bandwidth: HIMster II = 5.6 GByte/sec
• HIMsterII has Skylake CPUs (eg AVX512 avail.)
• Access to outside world restricted: only port 80 via proxy from login nodes
• Storage / Parallel File system:

• NO BACKUP of data
• Try to use large files: Source code should be in /home/
• Try not to put too many files into one directory (less than 1k)
• Try to avoid too much metadata load:

• DO NOT DO ls –l unless you really need it
• In your scripts avoid excessive tests of file existence (put in a sleep statement between two

tests say 30 secs)
• Use lfs find rather than GNU tools like find
• Use O_RDONLY | O_NOATIME (readonly and no update of access time)

HIMster compute nodes
8 racks

Cooling power
for up to 750kW

Power and OmniPath Interconnect

New
datacenter

Construction work
completed April 2025

Possible energy recovery

HIMster III:
first glimpse

• new university data center

• ~3MW

• Installation May 2025

HIMster III

• Installation May 2025

• 128 compute nodes in 4 racks
• Total 23576 Xeon CPU cores ➔ Rpeak 1,9PFLOPS

• 2x 96 core CPU per node

• 4GB RAM / core

• 100GB Infiniband

• 960GB SSD local scratch

• Water cooled, high temperature system (35/45°C)
• 206kW total (113kW to water -> heat pump -> recovered)

Quiz time

• @Peter:
Open HPC Intro:
https://create.kahoot.it/my-library/kahoots/5e8602db-27a7-4bc5-
b367-bdde485f86ef

• https://kahoot.it

https://create.kahoot.it/my-library/kahoots/5e8602db-27a7-4bc5-b367-bdde485f86ef
https://create.kahoot.it/my-library/kahoots/5e8602db-27a7-4bc5-b367-bdde485f86ef

Need further help?

• Your are welcome!
• HIM: Dalibor and Peter

• University: HPC group

• What to prepare:
• Steps to let your analysis run on a freshly installed computer.

Hands on
How to run interactively and submit jobs

Reservations today

• 25 nodes: “him-kurs” on partition “himster2_exp”

$ scontrol show reservation

ReservationName=him-kurs StartTime=2025-05-07T12:00:00 EndTime=2025-05-07T17:00:00 Duration=05:00:00

 Nodes=x[0763-0782] NodeCnt=20 CoreCnt=640 Features=(null) PartitionName=himster2_exp Flags=FLEX,MAGNETIC

 TRES=cpu=1280

 Users=(null) Groups=(null) Accounts=m2_himkurs Licenses=(null) State=INACTIVE BurstBuffer=(null) Watts=n/a

 MaxStartDelay=(null)

$ salloc -p himster2_exp --reservation=him-kurs -A m2_himkurs -N 1

Your ToDo List

1. Connect via SSH

2. upload data files,

3. Reserve some node

4. perform analysis interactively

5. and as a batch job

ToDo 1: Connect

• Activation steps:
https://docs.hpc.uni-mainz.de/docs/getting-started/procedure-outline/

• In short:
1. upload your key

2. prepare 2nd factor

3. arrange activation with hpc@uni-mainz.de

• Should work (test!):
$ ssh miil01.zdv.uni-mainz.de

https://docs.hpc.uni-mainz.de/docs/getting-started/procedure-outline/
mailto:hpc@uni-mainz.de

ToDo 2: Copy data

Copy some text file to himster2.

General rule of thumb:

• Copy analysis data to
/l1fs/him/<Group name>

old: /lustre/miifs05/scratch/<Group name>

• Source code to home directory
/home/<user id>

Protocols:

• SSH: SCP or rsync (access to everything)

• Samba (via mogon2smb.zdv.uni-mainz.de for lustre and mogonsmb.zdv.uni-mainz.de for home)
https://docs.hpc.uni-mainz.de/docs/storage/remote-access/

https://docs.hpc.uni-mainz.de/docs/storage/remote-access/

ToDo 3: Reserve some node

Learning objectives:

• Reserve resources

• Check number of cores on node

Steps:

1. Log into Himster 2

2. Reserve a complete node for 1h:
salloc -p himster2_exp --reservation=him-kurs -A m2_himkurs -N 1 -t 1:00:00
This step might take some minutes to complete. Wait until the prompt returns after
“salloc: Nodes x0755 are ready for job”

Hint: You are now working in *a new shell* on the headnode!

3. Confirm that information with this cross check:
squeue -u $USER

4. Find out how many cores your *node* has with
ssh [YOUR node hostname] #<-- eg ssh x0755
lscpu

Logout of that node with
logout

ToDo 4: Single core test run

Learning objectives:

• Perform a test drive of your demo analysis

Steps:

1. If not already done so, reserve first resources as described in TODO 3.
Check with: squeue -u $USER

2. Open 2 more ssh connections to run “top” two times: (1) on the head node (2) on the node

3. In your home directory, prepare the demo analysis with:
git clone https://gitlab.rlp.net/pbotte/learnhpc/
cd learnhpc/openMP/exercise1
compile
cc –o pi pi_start.c

4. Make sure, you are working on the head node, run your program:
./pi
Check, with your other SSH connections (see step 2), the binary runs on the head node. Use eg: “top”

5. Make sure, you are working on the head node, run your program:
srun ./pi
Check, with your other SSH connections (see step 2), the binary runs on the node. Use eg: “top”

ToDo 5: First Batch Job

#!/bin/bash

#SBATCH -J hello_world

#SBATCH -A m2_himkurs

#SBATCH -p himster2_exp

#SBATCH -N 1

#SBATCH -t 01:00:00 # Run time (hh:mm:ss) - 1 hours

#SBATCH --mem 100

#SBATCH --reservation=him-kurs

srun echo ”This is script ${SLURM_JOB_NAME} with JobID

${SLURM_JOB_ID}, running on ${SLURM_JOB_NUM_NODES} node with name

${SLURMD_NODENAME} on host $(hostname)”

ssh mogon

nano job.sh

sbatch job.sh

#check running

squeue -u $USER

#check outcome

nano myoutput.xxx

Bonus 1: Array Job

#!/bin/bash

#SBATCH -J hello_world

#SBATCH -A m2_himkurs

#SBATCH -p himster2_exp

#SBATCH -N 1

#SBATCH -t 01:00:00 # Run time (hh:mm:ss)

#SBATCH --mem=100

#SBATCH --reservation=him-kurs

#SBATCH --array=1-10%3 # submit tasks 1–10, max 3 running

at once

#SBATCH --output=logs/hello_%A_%a.out

#SBATCH --error=logs/hello_%A_%a.err

srun echo "Array job ${SLURM_JOB_NAME} (master JobID

${SLURM_ARRAY_JOB_ID})

→ task ${SLURM_ARRAY_TASK_ID}/${SLURM_ARRAY_TASK_COUNT}

→ running on ${SLURM_JOB_NUM_NODES} node(s), host $(hostname)"

ssh mogon

nano job-array.sh

sbatch job-array.sh

#check running

squeue -u $USER

#check outcome

Runs 10 independent tasks; no more than 3 concurrent.

Bonus 2: mpi4py hello world

Learning objectives:

• Use MPI with Python the first time
aka: make Python run its code on several cores and machines in parallel

Detailed description: https://gitlab.rlp.net/pbotte/learnhpc/-/tree/master/mpi4py/exercise1

Steps:

1. Download the starter files (this step might already be completed):
git clone https://gitlab.rlp.net/pbotte/learnhpc.git
cd learnhpc/mpi4py/exercise1/

2. Copy the skeleton:
cp start.py ex1.py

3. Load environment:
module load lang/Python/3.6.6-foss-2018b

4. Try with different number of ranks (”-n”), start with 3. Run on head node :
mpirun -n 3 ./ex1.py

5. And on the reserved node (if any, see exercise 2):
srun –n 3 ./ex1.py

https://gitlab.rlp.net/pbotte/learnhpc/-/tree/master/mpi4py/exercise1

Optimisation and usage

Order of optimisation

How to speed up your existing analysis:

• Apply trivial parallelisation (todays topic!)

Want to go further?

→ Identify bottlenecks (and only optimise them)

1. Optimise algorithm

2. Write algorithm on single core

3. Expand code to multicore, single node with OpenMP

4. Expand to multi node with MPI

5. Optimise multi node system

→ Not covered today, lecture in winter semester.

Parallel Programms: Worked out example

• Task: calculate sum of numbers distributed over N cores

• 6,8,9 3,5,8 9,1,2 2,3,4
core 0 core 1 core 2 core 3

• local sums: 23 16 12 9

• collection: 39 21

• final sum: 50

Always check the scaling of your program: O(N), O(N2), O(log(N))?

time

Trivial vs full usage of HPC

• Trivial parallelisation:
• Run your analysis several times (with different parameters)

• Out of the box with any non-interactively linux program

• Outcome / speedup unclear, but works very good for 10-100 jobs in parallel
Mainly disc access is limiting.

• Full usage (not covered today):
• No automated process to convert a single-core to a multi-core program

• Write parallel code or use existing.

Trivial Parallelisation (1)

• Submit a single core job multiple times

• Quick and often only solution for large software blobs (large packages used in collaborations)
• No principal difference compared to running on your desktop computer

• limits:
• required RAM (3GB/core)
• shared scratch (under “/localscratch”) in node (200GB-400GB)
• parallel filesystem (loading at start, writing back results) max. → 10-100 starting jobs in parallel

• Hint: use job arrays
• https://mogonwiki.zdv.uni-mainz.de/docs/running_jobs/submit_to_mogon/
• Less work load for SLURM

• Disadvantage (for single and array jobs):
• Single job on Mogon2 parallel partition always node exclusive: Single job blocks the complete node, independent on how

many resources requested!
• Node health check (~1min) and batch system overhead (~1min) for every step
→ bundle them to larger blocks → use a workload manager!

https://mogonwiki.zdv.uni-mainz.de/docs/running_jobs/submit_to_mogon/

Trivial Parallelisation (2): Workload Manager

Helper MPI-Script

https://gitlab.rlp.net/pbotte/workload-manager

• Occupy Ncores cores on |Ncores/20| (HIMster 2: |Ncores/32|) different
machines simultaneously

• Provide a directory with files to process (Nfiles)

• Controlling instance on core 0

• Starts your analysis executable on workers (cores 1..N-1)

• Feedback or pull requests welcome

Advantages:

• Suits short and long running analysis (avoid node health checks)

• Occupies a complete node

• Does load distribution

• Takes care of in and output files

Core 0
(Master)

Core 1 Core 2 Core 3

file 5file 4file 3file 2file 1

https://gitlab.rlp.net/pbotte/workload-manager

Trivial Parallelisation (2): Workload Manager

Helper MPI-Script

https://gitlab.rlp.net/pbotte/workload-manager

• Occupy Ncores cores on |Ncores/20| (HIMster 2: |Ncores/32|) different
machines simultaneously

• Provide a directory with files to process (Nfiles)

• Controlling instance on core 0

• Starts your analysis executable on workers (cores 1..N-1)

• Feedback or pull requests welcome

Advantages:

• Suits short and long running analysis (avoid node health checks)

• Occupies a complete node

• Does load distribution

• Takes care of in and output files

Core 0
(Master)

Core 1 Core 2 Core 3

file 5file 4

file 3file 2file 1

https://gitlab.rlp.net/pbotte/workload-manager

Trivial Parallelisation (2): Workload Manager

Helper MPI-Script

https://gitlab.rlp.net/pbotte/workload-manager

• Occupy Ncores cores on |Ncores/20| (HIMster 2: |Ncores/32|) different
machines simultaneously

• Provide a directory with files to process (Nfiles)

• Controlling instance on core 0

• Starts your analysis executable on workers (cores 1..N-1)

• Feedback or pull requests welcome

Advantages:

• Suits short and long running analysis (avoid node health checks)

• Occupies a complete node

• Does load distribution

• Takes care of in and output files

Core 0
(Master)

Core 1 Core 2 Core 3

file 5

file 4 file 3file 2

https://gitlab.rlp.net/pbotte/workload-manager

Trivial Parallelisation (2): Workload Manager

Helper MPI-Script

https://gitlab.rlp.net/pbotte/workload-manager

• Occupy Ncores cores on |Ncores/20| (HIMster 2: |Ncores/32|) different
machines simultaneously

• Provide a directory with files to process (Nfiles)

• Controlling instance on core 0

• Starts your analysis executable on workers (cores 1..N-1)

• Feedback or pull requests welcome

Advantages:

• Suits short and long running analysis (avoid node health checks)

• Occupies a complete node

• Does load distribution

• Takes care of in and output files

Core 0
(Master)

Core 1 Core 2 Core 3

file 5file 4

https://gitlab.rlp.net/pbotte/workload-manager

Lustre Hands-on

• Login to MOGON II

• Go to /lustre/project/m2_himkurs

• 4 Examples with IO patterns

• IO analysis with Darshan

• Please ask if you have any issues/questions

• Discussion at the end

Lustre Example A

• Straightforward blockwise IO

• 36 seconds vs 63 seconds

• 1M vs 4k blocksize

→ Small reads cause a lot of overhead

→ Try to increase the write size to ~1MB when
possible

Lustre Example B

• 10000 writes to the same file

• B_0 opens the file, writes to it, closes it

• B_1 keeps the file open between writes

• ~40x faster

• Only one client involved, even worse if locking
needs to be managed between clients

• → Economically use open/close at all times

	Intro
	Slide 1: Tools for Physicists: Boost your Analysis with High Performance Computing (HPC)
	Slide 2: Lecture Today
	Slide 3: Lecture Today - Feedback
	Slide 4: Intro: Trivial Parallelisation
	Slide 5: Intro: Trivial Parallelisation
	Slide 6: Intro: Running in parallel
	Slide 7: Intro: What can be done on HPC
	Slide 8: Intro: Worked out example
	Slide 9: Intro: Amdahl’s Law

	Why HPC?
	Slide 10: Why High Performance Computing (HPC)?
	Slide 11: HPC out of distributed desktop computers?
	Slide 12: Why HPC?
	Slide 13: The Era of Moore’s Law
	Slide 14: Moore‘s Law
	Slide 15: Single-Core Performance
	Slide 16: Answer: Multi core
	Slide 17: Moore‘s Law scaling with cores
	Slide 18: Recap: Trivial Parallelisation and Multicore systems
	Slide 19: Recap: Trivial Parallelisation and Multicore systems

	Building Blocks
	Slide 20: HPC building blocks
	Slide 21: What is High Performance Computing (HPC)
	Slide 22: Building Blocks: Compute nodes
	Slide 23: Building Blocks: Storage
	Slide 24: Lustre design – Components
	Slide 25: Lustre design – Architecture
	Slide 26: Building Blocks: Software
	Slide 27: Building Blocks: Login nodes
	Slide 28: Building Blocks: Batch System
	Slide 29: SLURM scheduler: Multifactor Priority
	Slide 30: Batch System: SLURM
	Slide 31: Sample Submit Script
	Slide 32: Trivial Parallelisation
	Slide 33: Script generator
	Slide 34: LLM for batch script generation
	Slide 35: HIMster II: Info and do’s
	Slide 36
	Slide 37
	Slide 38
	Slide 39: New datacenter
	Slide 40: HIMster III: first glimpse
	Slide 41: HIMster III
	Slide 42: Quiz time

	How to go on
	Slide 43: Need further help?

	Hands-On
	Slide 44: Hands on
	Slide 45: Reservations today
	Slide 46: Your ToDo List
	Slide 47: ToDo 1: Connect
	Slide 48: ToDo 2: Copy data
	Slide 49: ToDo 3: Reserve some node
	Slide 50: ToDo 4: Single core test run
	Slide 51: ToDo 5: First Batch Job
	Slide 52: Bonus 1: Array Job
	Slide 53: Bonus 2: mpi4py hello world

	Backup
	Slide 54: Optimisation and usage
	Slide 55: Order of optimisation
	Slide 56: Parallel Programms: Worked out example
	Slide 57: Trivial vs full usage of HPC
	Slide 58: Trivial Parallelisation (1)
	Slide 59: Trivial Parallelisation (2): Workload Manager
	Slide 60: Trivial Parallelisation (2): Workload Manager
	Slide 61: Trivial Parallelisation (2): Workload Manager
	Slide 62: Trivial Parallelisation (2): Workload Manager
	Slide 63: Lustre Hands-on
	Slide 64: Lustre Example A
	Slide 65: Lustre Example B

