

11-13 June, 2025 @ St. Goar, Germany

Project TFF – Phenomenology

Photon-photon fusion to three-meson final states

Xiu-Lei Ren

In collaboration with:

Igor Danilkin & Marc Vanderhaeghen (JGU Mainz)

11-13 June, 2025 @ St. Goar, Germany

Project TFF – Phenomenology

Photon-photon fusion to three-meson final states

Xiu-Lei Ren

In collaboration with:

Igor Danilkin & Marc Vanderhaeghen (JGU Mainz)

HLbL contribution from white papers

WP (2020) : 92 (19)		
hadronic state	$a_{\mu}^{ m HLbL}~[10^{-11}]$	
scalars+tensors $\gtrsim 1 \text{ GeV}$	$\sim -1(3)$	t
axial vectors	$\sim 6(6)$	

WP(2025): $103.3(8.8) \times 10^{-11}$			
hadronic state	$a_{\mu}^{ m HLbL} \ [10^{-11}]$		
tensors (f_2, a_2)	$\sim -2.5(8)$		
axial vectors (f_1, f'_1, a_1)	$\sim 12.2(4.3)$		

- Total uncertainty of HLbL reduced up to <10%
- The axial vector contributions are still the major source of uncertainty
- Most relevant axial vector and tensor mesons

	$f_1(1285)$	$f_1(1420)$	$a_1(1260)$	$a_2(1320)$
$I^G(J^{PC})$	$0^+(1^{++})$	$0^+(1^{++})$	$1^{-}(1^{++})$	$1^{-}(2^{++})$
	$\eta\pi\pi$ (52%)	$K\bar{K}\pi$ (96%)	$\pi\pi\pi$	$\pi\pi\pi$ (70%)
decay	$\pi\pi\pi\pi$ (33%)	$\eta\pi\pi$ (4%)	$KK\pi$	$\eta\pi~(14\%)$
modes	$K\bar{K}\pi$ (9%)			$\omega\pi\pi$ (11%)
	$\gamma ho^0~(6\%)$			$K\bar{K}~(5\%)$

- Coordinate with BESIII experiments
 TFF-2: Analysis of axial-vector meson
 TFFs in the channel π⁺π⁻η at BESIII
- Focus on the photon-photon fusion to three mesons

 $\gamma \gamma \to \pi^+ \pi^- \pi^0$ PRD107, 054037 (2023) $\gamma \gamma^* \to K \bar{K} \pi$ PRD110, 054004 (2024) $\gamma \gamma^* \to \eta \pi^+ \pi^-$ PRD110, 094043 (2024)

 $\gamma^{(*)}\gamma^{(*)} \rightarrow \pi^+\pi^-\pi^0$ process

	$f_1(1285)$	$f_1(1420)$	$a_1(1260)$	$a_2(1320)$
$I^G(J^{PC})$	$0^+(1^{++})$	$0^+(1^{++})$	$1^{-}(1^{++})$	$1^{-}(2^{++})$
	$\eta\pi\pi$ (52%)	$K\bar{K}\pi$ (96%)	πππ	$\pi\pi\pi$ (70%)
decay	$\pi\pi\pi\pi$ (33%)	$\eta\pi\pi$ (4%)	$KK\pi$	$\eta\pi~(14\%)$
modes	$K\bar{K}\pi$ (9%)			$\omega\pi\pi$ (11%)
	$\gamma ho^0~(6\%)$			$Kar{K}~(5\%)$

XLR, I. Danilkin, M. Vanderhaeghen, PRD107,054037(2023)

Resonances in $\gamma^{(*)}\gamma^{(*)} \rightarrow \pi^+\pi^-\pi^0$

 \square $a_1(1260)$ production is only from $\gamma^{(*)}\gamma^* \to \pi^+\pi^-\pi^0$

• $a_1(1260)$ is not a well-established resonance

 $\Box a_2(1320)$ production is dominant in $\gamma^{(*)}\gamma^{(*)} \rightarrow \pi^+\pi^-\pi^0$

• $a_2(1320)$ is a well-defined resonance

T-Matrix Pole $\sqrt{s} = (1305-1321)-i(52-58)$ MeV Mass (Breit-Wigner) = 1318.2 \pm 0.6 MeV (S = 1.2) Full width $\Gamma = 107 \pm 5$ MeV

T-Matrix Pole $\sqrt{s} = (1209^{+13}_{-10}) - i(288^{+45}_{-12})$ MeV

Full width (Breit-Wigner) = 250 to 600 MeV [i]

Mass (Breit-Wigner) = 1230 ± 40 MeV ^[i]

a₁(1260) [*j*]

a2(1320)

 $I^{G}(J^{PC}) = 1^{-}(1^{+})$

 $I^{G}(J^{PC}) = 1^{-}(2^{++})$

- **D** Complicated mechanism involved in the $\pi^+\pi^-\pi^0$ final states
 - $\rho(770), \sigma/f_0(500), f_2(1270)$ resonances

D As a first step, we focus on $\gamma \gamma \rightarrow \pi^+ \pi^- \pi^0$

- Experimental data: low statistics
 - ✓ ARGUS collab. Z. Phys. C 74, 469 (1997)
 - ✓ L3 collab. *PLB 413, 147(1997)*
- Cross section data shows a significant difference in the low-energy region

Phenomenological model for $\gamma\gamma \rightarrow \pi^+\pi^-\pi^0$

Cover the low and the intermediate energy region

Include all relevant channels within effective Lagrangian method

Description of ARGUS and L3 data

 $\gamma\gamma^* \to K\bar{K}^* \to K\bar{K}\pi$ process

	$f_1(1285)$	$f_1(1420)$	$a_1(1260)$	$a_2(1320)$
$I^G(J^{PC})$	$0^+(1^{++})$	$0^+(1^{++})$	$1^{-}(1^{++})$	$1^{-}(2^{++})$
	$\eta\pi\pi$ (52%)	$K\bar{K}\pi$ (96%)	πππ	$\pi\pi\pi$ (70%)
decay	$\pi\pi\pi\pi$ (33%)	$\eta\pi\pi$ (4%)	$KK\pi$	$\eta\pi~(14\%)$
modes	$K\bar{K}\pi$ (9%)			$\omega\pi\pi$ (11%)
	$\gamma ho^0~(6\%)$			$K\bar{K}~(5\%)$

XLR, I. Danilkin, M. Vanderhaeghen, PRD110 (2024) 094043

$f_1(1420)$ production in $\gamma\gamma^*$ fusion

D Ideal channel to study the $f_1(1420)$ TFFs

$$\gamma^{(*)}\gamma^* \to f_1(1420) \stackrel{96\%}{\to} K\bar{K}^*(892) \to K\bar{K}\pi$$

• L3 experimental data JHEP 03(2007) 018

 $\checkmark e^+e^- \rightarrow e^+e^-\gamma\gamma^* \rightarrow e^+e^-K^0_S K^{\pm}\pi^{\mp} \text{ with } Q^2 \in [0.01 - 7.0] \text{ GeV}^2$

Ongoing analysis of BESIII measurement
 Master Thesis by N. Effenberger @ Mainz

among different channels

Provide a more realistic MC generator for data analysis

- We focus on the $\gamma\gamma^* \to K\bar{K}^*(892)$ process
- Build up a phenomenological model in the $f_1(1420)$ region

Phenomenological model for $\gamma\gamma^* \to K^{\pm}K^{*\mp}$

Use effective Lagrangian approach to evaluate the amplitudes

□ Reasonable description of L3 events: $e^+e^- \rightarrow e^+e^-K_S^0K^{\pm}\pi^{\mp}$

• Constructive interference among $\eta(1475), f_1(1420), and non-res.$ channels

Theoretical results of the $e^+e^- \rightarrow e^+e^-K_S^0K^{\pm}\pi^{\mp}$ process is sensitive to the f1(1420) TFF

Prediction of cross section $\gamma\gamma^* \to K^{\pm}K^{*\mp}$

• Large Q^2 , f₁(1420) channel dominant

 $\gamma\gamma^* \rightarrow \eta\pi\pi$ process

	$f_1(1285)$	$f_1(1420)$	$a_1(1260)$	$a_2(1320)$
$I^G(J^{PC})$	$0^+(1^{++})$	$0^+(1^{++})$	$1^{-}(1^{++})$	$1^{-}(2^{++})$
	$\eta\pi\pi$ (52%)	$K\bar{K}\pi$ (96%)	$\pi\pi\pi$	$\pi\pi\pi$ (70%)
decay	$\pi\pi\pi\pi$ (33%)	$\eta\pi\pi$ (4%)	$KK\pi$	$\eta\pi~(14\%)$
modes	$K\bar{K}\pi$ (9%)			$\omega\pi\pi$ (11%)
	$\gamma ho^0~(6\%)$			$K\bar{K}~(5\%)$

XLR, I. Danilkin, M. Vanderhaeghen, PRD 110 (2024) 094043

$f_1(1285)$ production in $\gamma\gamma^* \to \eta\pi\pi$

Clean channel to study the $f_1(1285)$ TFFs

- $\eta'(958)$ and $f_1(1285)$ well separated
- $f_1(1285)$ peak vanish (Q²=0), exclude $\eta(1295)$

Existing data: MarkII, TPC/Two-Gamma, L3

- Low-statistic / large background
- No analysis of different helicity states of $f_1(1285)$

BESIII on-going analysis @ Mainz group

- Feasibility study M.Sc. thesis of D. Becker
- Ph.D. project (2023-) J. Muskalla
- Data analysis needs the Monte Carlo generator, which includes interference among different channels

Phenomenological model for $\gamma\gamma^* \rightarrow \eta\pi^+\pi^-$

□ Focus on the production mechanism of f₁(1285)

 $f_1(1285) \text{ TFFs}$ $F_{f_1\gamma^*\gamma^*}^{TT}(Q_1^2, 0) = -F_{f_1\gamma^*\gamma^*}^{LT}(Q_1^2, 0) = -\frac{F_{f_1\gamma^*\gamma^*}^{LT}(0, 0)}{(1+Q_1^2/\Lambda_{f_1}^2)^2}$

Prediction for the invariant mass distributions

Destructive interference

Phenomenological model for $\gamma\gamma^* \rightarrow \eta\pi^+\pi^-$

Focus on the production mechanism of f₁(1285)

- f₁(1285) TFFs

 $F_{f_1\gamma^*\gamma^*}^{TT}(Q_1^2,0) = -F_{f_1\gamma^*\gamma^*}^{LT}(Q_1^2,0) = -\frac{F_{f_1\gamma^*\gamma^*}^{LT}(0,0)}{(1+Q_1^2/\Lambda_{f_1}^2)^2}$

Prediction for the invariant mass distributions

Interference: important to avoid the misinterpretation of the experimental data!

Theoretical Predictions for $\gamma\gamma^* \rightarrow \eta\pi^+\pi^-$

Destructive interference: hinted by BESIII preliminary data

1.2

0.8

Theoretical Predictions for $\gamma\gamma^* \rightarrow \eta\pi^+\pi^-$

Destructive interference: hinted by BESIII preliminary data

Possible extensions

- Theoretical input for Monte Carlo Event Generator (HadroTOPS) of hadronic two-photon scattering in electron-positron colliders
 - Included $\gamma^* \gamma^* \to f_1(1285) \to \eta \pi^+ \pi^- joint paper on HadroTOPS$
 - Extend $\gamma \gamma^* \to K \bar{K}^*$ study to double virtual case and allow $K^* \to K \pi$
 - Extend $\gamma\gamma \rightarrow \pi^+\pi^-\pi^0$ study to single/double virtual case and include $a_1(1260)$ contribution

✓ Singly-virtual $a_1(1260)$ TFFs: (dipole form)

$$F_{a_{1}\gamma^{*}\gamma^{*}}^{TL}\left(0,Q_{2}^{2}\right) = -F_{a_{1}\gamma^{*}\gamma^{*}}^{TT}\left(0,Q_{2}^{2}\right) = \frac{F_{a_{1}\gamma^{*}\gamma^{*}}^{TL}(0,0)}{\left(1 + Q_{2}^{2}/\Lambda_{a_{1}}^{2}\right)^{2}}$$

- asymptotic behavior $\, \sim \, 1/Q_2^4$

 ✓ a₁(1260) decay process has been studied in PRD104 (2021) 036008 within the effective Lagrangian approach

FP1

Possible extensions

- Theoretical input for Monte Carlo Event Generator (HadroTOPS) of hadronic two-photon scattering in electron-positron colliders
 - Included $\gamma^* \gamma^* \to f_1(1285) \to \eta \pi^+ \pi^- joint paper on HadroTOPS$
 - Extend $\gamma \gamma^* \to K \bar{K}^*$ study to double virtual case and allow $K^* \to K \pi$
 - Extend $\gamma\gamma \rightarrow \pi^+\pi^-\pi^0$ study to single/double virtual case and include $a_1(1260)$ contribution

Theoretical development — FP2

- BESIII data on $\gamma^{(*)}\gamma^* \to \eta \pi^+ \pi^-$ will become available in the near future
- Upgrade the existing phenomenological model of $\gamma^{(*)}\gamma^* \rightarrow f_1(1285) \rightarrow \eta \pi^+ \pi^$ to a dispersion-relation-based analysis

FP1

Summary and outlook

Phenomenological study of photon-photon fusion to three mesons

Focus on the lowest-lying axial vectors and tensors

Possible extensions

- Theoretical input for Monte Carlo Event Generator of hadronic two-photon scattering in electron-positron colliders
- Upgrade the existing phenomenological model to a dispersion-relationbased analysis

Summary and outlook

Phenomenological study of photon-photon fusion to three mesons

Focus on the lowest-lying axial vectors and tensors

Possible extensions

- Theoretical input for Monte Carlo Event Generator of hadronic two-photon scattering in electron-positron colliders
- Upgrade the existing phenomenological model to a dispersion-relationbased analysis

Thank you for your altention!