Meson Physics at JLab

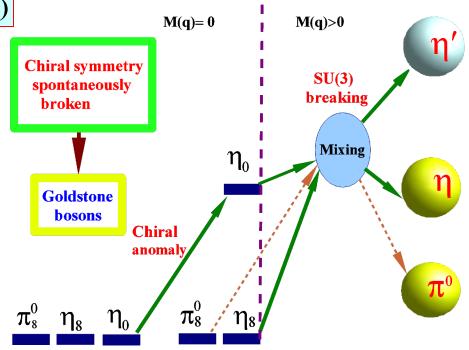
Liping Gan University of North Carolina Wilmington

Outline

- Introduction of Physics
- PrimEx Primakoff Program
- JLab Eta Factory (JEF)
- Summary

Open Questions in Modern Physics

- What is the origin of QCD confinement?
- How did the visible mass emerge in the early universe?
- What is the cause of the matter-antimatter asymmetry in the universe?
- What is the nature of dark matter?

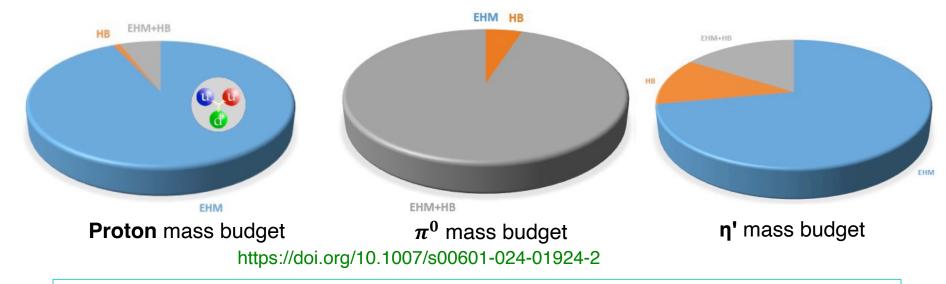

Light pseudoscalar mesons offer a sensitive tool to explore these fundamental questions.

Low-Energy QCD Symmetries and Light Mesons

ullet QCD Lagrangian in Chiral limit (m_q \rightarrow 0) is invariant under:

$$SU_L(3) \times SU_R(3) \times U_A(1) \times U_B(1)$$

- Chiral symmetry SU_L(3)xSU_R(3) spontaneously breaks to SU(3)
 - 8 Goldstone Bosons (GB)
- U_A(1) is explicitly broken:(Chiral anomalies)
 - Non-zero mass of η₀
 - $ightharpoonup \Gamma(\pi^0 \rightarrow \gamma\gamma), \ \Gamma(\eta \rightarrow \gamma\gamma), \ \Gamma(\eta' \rightarrow \gamma\gamma)$
- □ SU_L(3)xSU_R(3) and SU(3) are explicitly broken:
 - GB are massive
 - \blacktriangleright Mixing of π^0 , η , η'



The π^0 , η , η' system provides a rich laboratory to study the symmetry structure of confinement QCD.

What is the origin of visible mass?

Mass-generating mechanisms:

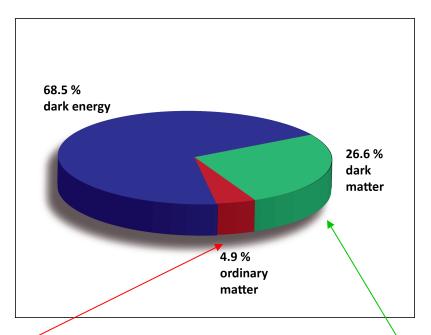
- Higgs Boson (HB), alone is responsible for <2% of the visible mass in the universe.
- Emergent Hadron Mass (EHM) and its constructive interference with Higgs-Boson (EHM+HB) account for >98% of the visible mass.

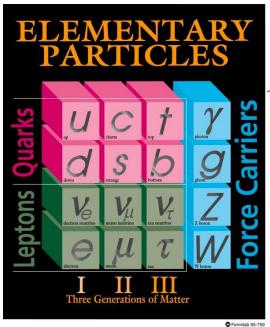
Complementary to proton, π^0 and η offers a unique opportunity to study the interference between two known mass generating mechanisms, while η' offers access to all three contributions due to chiral anomaly.

Discrete Symmetries

Class	Violated	Conserved	Interaction
0		C, P, T, CP, CT, PT, CPT	strong, electromagnetic
I	C, P, CT, PT	T, CP, CPT	(weak, with no KM phase or flavor-mixing)
II	P, T, CP, CT	C, PT, CPT	
III	C, T, PT, CP	P,CT,CPT	
IV	C, P, T, CP, CT, PT	CPT	weak

Class II: P-, CP-violation


- > QCD θ-term
- \blacktriangleright Examples: $\eta^{(\prime)} \rightarrow 2\pi$, $\eta^{(\prime)} \rightarrow \pi^+\pi^-\gamma^{(*)}$, ...
- Strong constraints from EDM measurements


Class III: C-, CP-violation

- ➤ A new C- and T-violating, and P-conserving interaction was proposed by Bernstein, Feinberg and Lee, but little theoretic progress until very recent. Phys. Rev.,139, B1650 (1965)
- \blacktriangleright Examples: $\eta^{(\prime)} \rightarrow 3\gamma$, $\eta^{(\prime)} \rightarrow \pi^{o} \gamma^{(*)}$, ...
- > Electroweak radiative corrections mix class II and III, but much weaker EDM constraints.

Class III has much weaker experimental constraint, offer an opportunity for new physics search in η decays.

BSM Physics in Dark Sector

Dark Sector

- New gauge forces, bosons and fermions beyond SM.
- The stability of dark matter can be explained by the dark charge conservation.

How to Lawrence Coupfing 1997 and Dark Sector

Standard Model: $SU(3) \times SU(2) \times U(1)$

Dark Sector: Gauge Interactions? Dark matter?

vector:

Leptophobic vector B '

$$\eta, \eta' \to B' \gamma \to \pi^0 \gamma \gamma$$
, (0.14 < $m_{B'}$ < 0.62 GeV);
 $\eta' \to B' \gamma \to \pi^+ \pi^- \pi^0 \gamma$, (0.62 < $m_{B'}$ < 1 GeV).

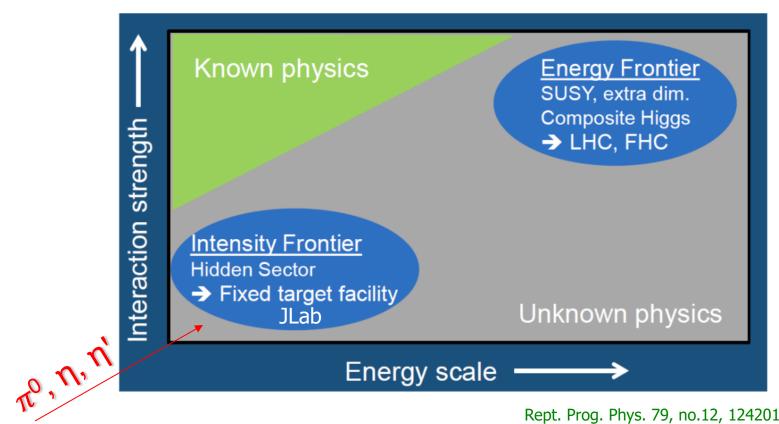
X boson or dark photon: η, η' → Xγ → e⁺e⁻γ

Portals:

vector $\kappa B^{\mu\nu}V_{\mu\nu}$

Scalar $H^+H(\varepsilon S + \lambda S^2)$

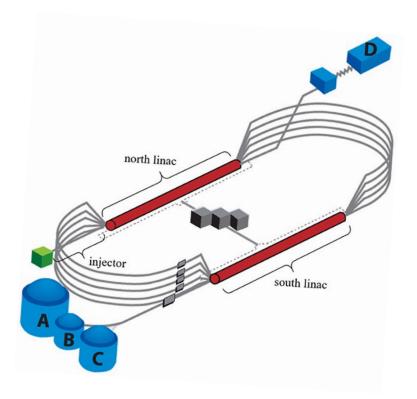
Fermion *ξLHN*


$$\mathsf{ALP} \ \ c_{\gamma\gamma}\frac{\alpha}{4\pi}\frac{a}{f}F_{\mu\nu}\widetilde{F}^{\mu\nu} + c_{GG}\frac{\alpha_s}{4\pi}\frac{a}{f}G^a_{\mu\nu}\widetilde{G}^{a,\,\mu\nu}$$

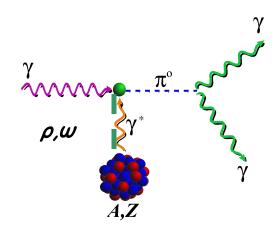
scalar S:
$$\eta \to \pi^0 S \to \pi^0 \gamma \gamma$$
, $\pi^0 e^+ e^-$, $(10 \text{ MeV} < m_S < 2m_\pi)$; $\eta, \eta' \to \pi^0 S \to 3\pi$, $\eta' \to \eta S \to \eta \pi \pi$, $(m_S > 2m_\pi)$.

Fermion:
$$\eta \rightarrow \pi^0 H$$
, with $H \rightarrow \nu N_2$, $N_2 \rightarrow h' N_1$, $h' \rightarrow e^+ e^-$

Axion-Like Particles (ALP): $\eta, \eta' \to \pi \pi a \to \pi \pi \gamma \gamma, \pi \pi e^+ e^-$

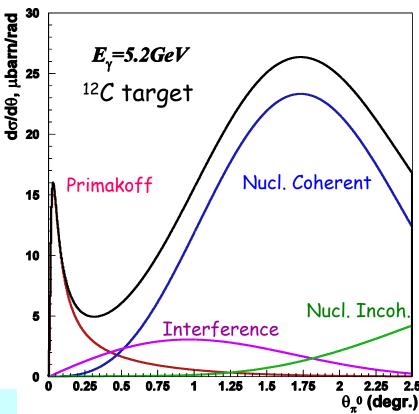

Landscape of BSM Physics Search

Rept. Prog. Phys. 79, no.12, 124201


Complementary to other types of experiments, pseudoscalar mesons offer unique sensitivity for sub-GeV new physics that are flavor-conserving and light quark-coupling.

Jefferson Lab

Primakoff Effect


$$\frac{d\sigma_{\text{Pr}}}{d\Omega} = \Gamma_{\gamma\gamma} \frac{8\alpha Z^2}{m_{\pi}^3} \frac{\beta^3 E^4}{Q^4} |F_{e.m.}(Q)|^2 \sin^2 \theta_{\pi}$$

- Peaked at very small forward angle: $\langle \theta_{\rm Pr} \rangle_{\rm peak} \propto \frac{m^2}{2E^2}$
- Beam energy sensitive:

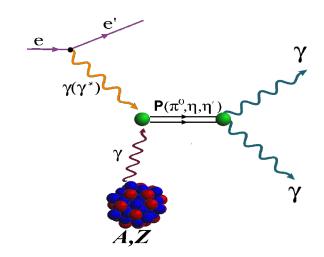
$$\left\langle \frac{d\sigma_{Pr}}{d\Omega} \right\rangle_{peak} \propto \frac{E^4}{m^3}$$
, $\int d\sigma_{Pr} \propto \frac{Z^2}{m^3} \log E$

$$\left\langle \left\langle \theta_{\Pr} \right\rangle_{peak} \propto \frac{m^2}{2E^2} \right\rangle \left\langle \left\langle \theta_{NC} \right\rangle_{peak} \propto \frac{2}{E \cdot A^{1/3}}$$

Coherent process

- The higher beam energy is, the higher Primakoff cross section and the better separation of Primakoff from the nuclear backgrounds.
- A higher beam energy is more important for more massive particle

PrimEx Primakoff Program at JLab 6 & 12 GeV


Precision measurements of electromagnetic properties of π^0 , η , η' via Primakoff effect

- 1) $\Gamma(\pi^0 \rightarrow \gamma\gamma)$ @ 6 GeV
- 2) $\Gamma(\eta \rightarrow \gamma \gamma)$
- 3) $\Gamma(\eta' \rightarrow \gamma\gamma)$

Input to Physics:

- precision tests of chiral symmetry and anomalies
- light quark mass ratio
- η-η' mixing angle
- input to calculate HLbL in (g-2)_μ
- origin of the visible mass

b) Transition Form Factors at Q² of 0.001-0.3 GeV²/c²:

$$F(\gamma \gamma^* \rightarrow \pi^0), F(\gamma \gamma^* \rightarrow \eta), F(\gamma \gamma^* \rightarrow \eta')$$

Input to Physics:

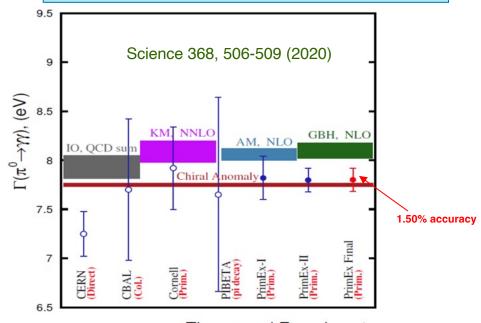
- π⁰,η and η' electromagnetic interaction radii
- is the η' an approximate Goldstone boson?
- input to calculate HLbL in (g-2)_u
- origin of the visible mass

Status of Primakoff Program at JLab 6 & 12 GeV

Precision measurements of electromagnetic properties of π^0 , η , η' via Primakoff effect

a) Two-Photon Decay Widths:

- 1) $\Gamma(\pi^0 \rightarrow \gamma\gamma)$ @ 6 GeV (in Hall B)
- 2) $\Gamma(\eta \rightarrow \gamma \gamma)$
- 3) $\Gamma(\eta' \rightarrow \gamma\gamma)$


Input to Physics:

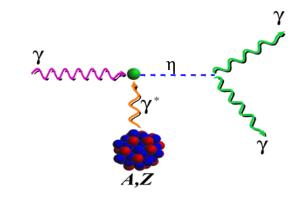
- precision tests of chiral symmetry and anomalies
- determination of light quark mass ratio
- η-η' mixing angle
- → input to calculate HLbL in (g-2)_µ

 The chiral anomaly prediction is exact for massless quarks:

$$\Gamma(\pi^0 \to \gamma \gamma) = \frac{m_{\pi^0}^3 \alpha^2 N_c^2}{576 \pi^3 F_{\pi^0}^2} = 7.750 \pm 0.016 \, eV$$

• $\Gamma(\pi^0 \rightarrow \gamma \gamma)$ is one of the few quantities in confinement region that QCD can calculate precisely at ~1% level to higher orders!

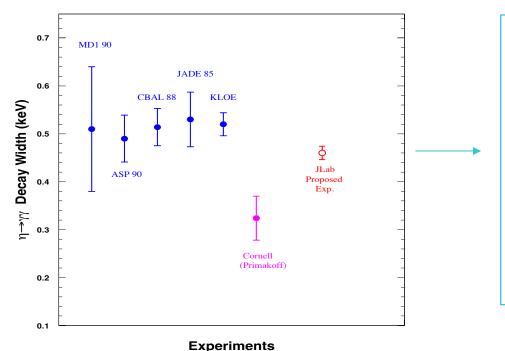
Status of Primakoff Program at JLab 6 & 12 GeV (cont.)


Precision measurements of electromagnetic properties of π^0 , η , η' via Primakoff effect

- 1) Γ(π⁰→γγ) @ 6 GeV
- 2) $\Gamma(\eta \rightarrow \gamma \gamma)$
- 3) $\Gamma(\eta' \rightarrow \gamma\gamma)$

Input to Physics:

- precision tests of chiral symmetry and anomalies
- determination of light quark mass ratio
- η-η' mixing angle
- input to calculate HLbL in (g-2)_μ

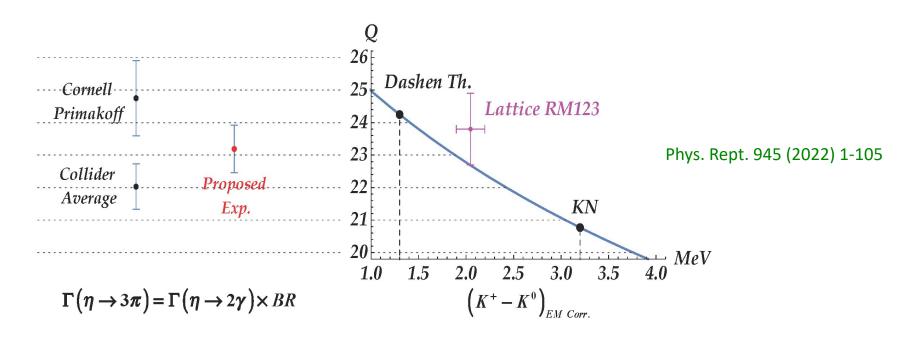

$$\frac{d\sigma_{Pr}}{d\Omega} = \frac{\Gamma_{\gamma\gamma}}{m_{\rm n}^3} \frac{8\alpha Z^2}{Q^4} \frac{\beta^3 E^4}{Q^4} |F_{e.m.}(Q^2)|^2 \sin^2\theta_{\rm n}$$

On-Going PrimEx-eta experiment (in Hall D)

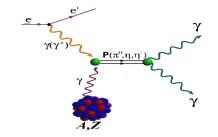
- A full data set was completed via three run periods in 2019, 2021 and 2022.
- Data analysis is in progress.

Physics for $\Gamma(\eta \rightarrow \gamma\gamma)$ Measurement

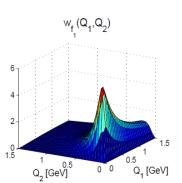
Resolve long standing discrepancy between previous collider and Primakoff measurements:

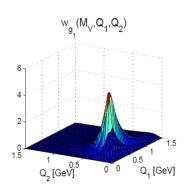


- Extract η-η'mixing angle
- Improve calculation of the ηpole contribution to
 Hadronic Light-by-Light
 (HLbL) scattering in (g-2)_μ
- Improve all partial decay widths in the η-sector

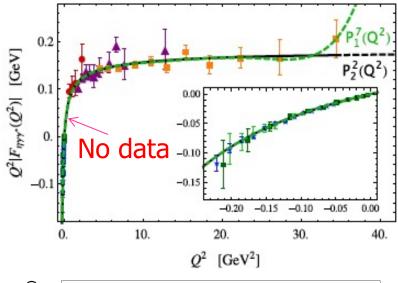

Precision Determination Light Quark Mass Ratio

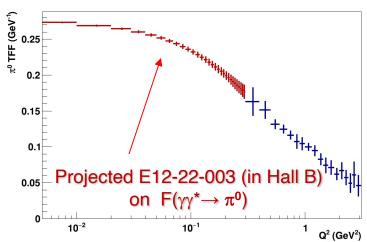
A clean probe for quark mass ratio:
$$Q^2 = \frac{m_s^2 - \hat{m}^2}{m_d^2 - m_u^2}$$
, where $\hat{m} = \frac{1}{2}(m_u + m_d)$


- $\rightarrow \eta \rightarrow 3\pi$ decays through isospin violation: $A = (m_u m_d)A_1 + \alpha_{em}A_2$
- $\triangleright \ \alpha_{em}$ is small
- ► Amplitude: $A(\eta \to 3\pi) = \frac{1}{Q^2} \frac{m_K^2}{m_\pi^2} (m_\pi^2 m_K^2) \frac{M(s,t,u)}{3\sqrt{3}F^2}$

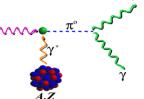


Space-Like Transition Form Factors (Q²: 0.001-0.3 GeV²/c²)

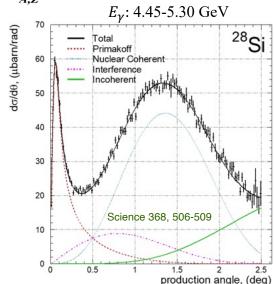



- Direct measurement of slopes
 - Interaction radii:
 F_{YY*P}(Q²)≈1-1/6 · <r²>_PQ²
 - ChPT for large N_c predicts relation between the three slopes. Extraction of O(p⁶) low-energy constant in the chiral Lagrangian
- Input for hadronic light-by-light calculations in muon (g-2)

Phys.Rev.D65,073034


New opportunities with JLab 22 GeV Upgrade

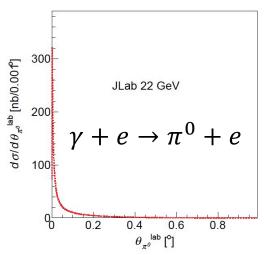
- 1. The first π^0 Primakoff production off an electron target to measure $\Gamma(\pi^0 \rightarrow \gamma \gamma)$ and $\Gamma(\gamma \gamma^* \rightarrow \pi^0)$.
- 2. Improve the precisions of η/η' Promakoff production off nuclear targets.
- 3. Search for new sub-GeV gauge bosons (scalars and pseudoscalars) via the Primakoff production:
 - Strong CP and Hierarchy problems
 - $(g-2)_{\mu}$ and puzzle of proton charge radius
 - Portals coupling SM to the dark sector:


$$H^{+}H(\varepsilon S + \lambda S^{2}) \qquad c_{\gamma\gamma}\frac{\alpha}{4\pi}\frac{a}{f}F_{\mu\nu}\widetilde{F}^{\mu\nu} + c_{GG}\frac{\alpha_{s}}{4\pi}\frac{a}{f}G^{a}_{\mu\nu}\widetilde{G}^{a,\,\mu\nu}$$

Advantages of the π^0 Primakoff Production off an Electron

PrimEx-II:
$$\gamma + {}^{28}Si \rightarrow \pi^0 + {}^{28}Si$$

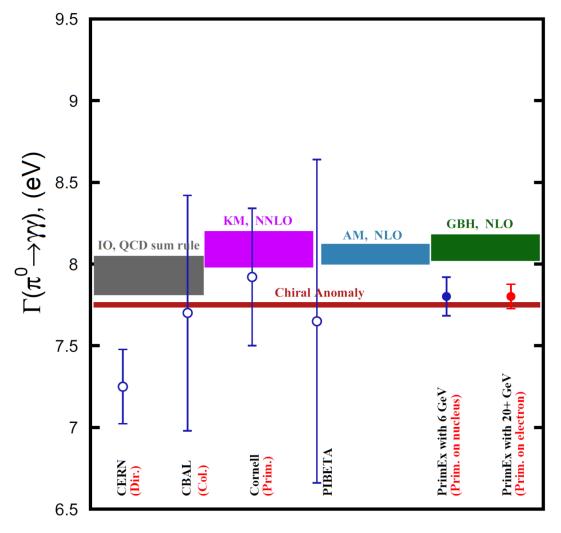
$$\frac{d\sigma_{\text{Pr}}}{d\Omega} = \boxed{\Gamma_{\gamma\gamma}} \frac{8\alpha Z^2}{m_{\pi}^3} \frac{\beta^3 E^4}{Q^4} |F_{e.m.}(Q)|^2 \sin^2 \theta_{\pi}$$



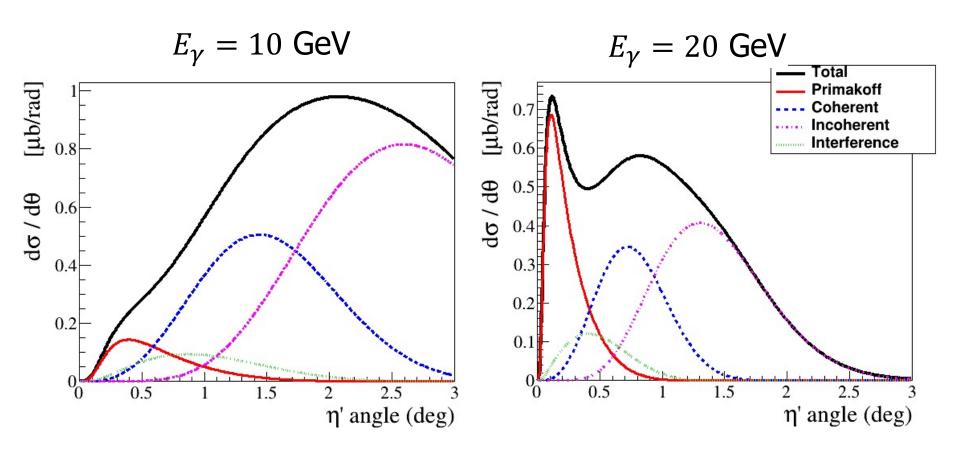
Main challenges for the nuclear target:

- Nuclear backgrounds
- Nuclear effects
- No recoil detection

Advantages of an electron target:


- Eliminate all nuclear backgrounds
- A point-like electron target to eliminate nuclear effects
- Recoiled electron detection

$d\sigma_{ extsf{Pr}}$	$= 8\alpha \beta^3 E^4$
$\frac{a_{Pr}}{=}$	$\Gamma_{mu} = \frac{\partial \theta}{\partial r} = \sin^2 \theta_r$
$d\Omega$	$\Gamma_{\gamma\gamma} \frac{8\alpha}{m_{\pi}^3} \frac{\beta^3 E^4}{Q^4} \sin^2 \theta_{\tau}$


Measurement	Reaction	$rac{E_{th}}{ ext{(GeV)}}$
$\Gamma(\pi^0 \to \gamma \gamma)$	$\gamma + e \rightarrow \pi^0 + e$	18.0
$F(\gamma^*\gamma\to\pi^0)$	$e + e \rightarrow \pi^0 + e + e$	18.1

Projected $\Gamma(\pi^0 \to \gamma \gamma)$ at JLab 22 GeV with an Electron Target


Theory and Experiments

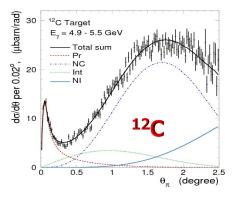
Improve Primakoff Measurements of η/η' with nuclear targets

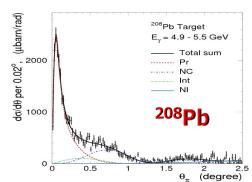
$$\gamma + {}^4He \rightarrow \eta' + {}^4He$$

Search for sub-GeV Scalar and Pseudoscalar via Primakoff Effect

$$\mathcal{L}_{\text{eff}} \supset \frac{c_{\gamma}}{4\Lambda} a F^{\mu\nu} \tilde{F}_{\mu\nu}$$

$$\frac{d\sigma_{Pr}}{d\Omega} \sim \frac{c_{\gamma}^2 \alpha Z^2}{8\pi\Lambda^2} \cdot \frac{\beta^3 E^4}{Q^4} \cdot |F_{e.m.}(Q)|^2 sin^2 \theta_a$$

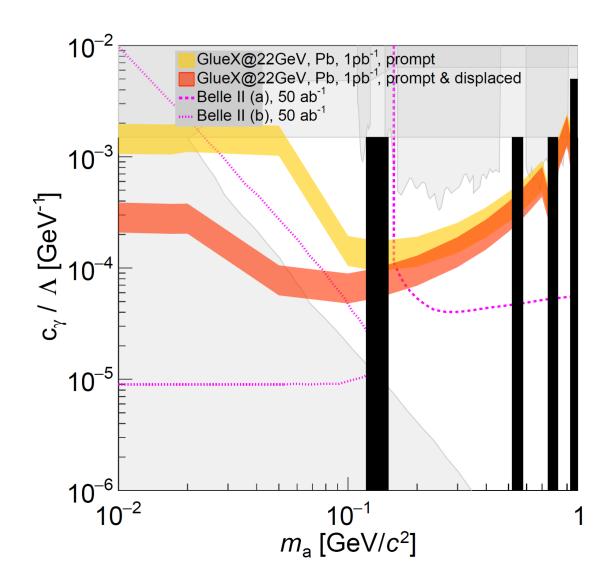

The Primakoff signal dominates in the forward angles



Minimizing the QCD backgrounds

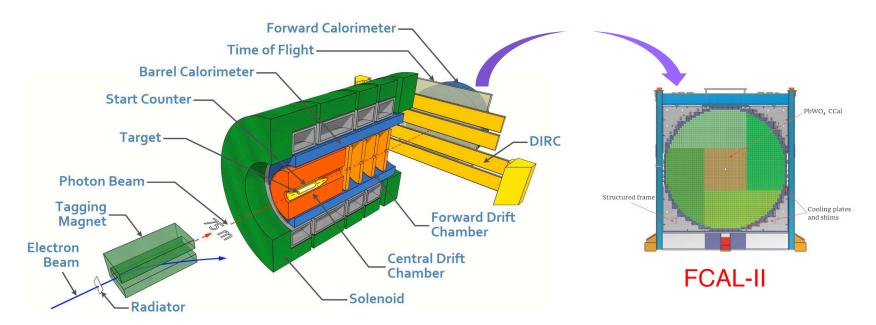
Favorable experimental condition:

- A high energy beam
- A high Z nuclear target



PrimEx I

Phys.Rev.Lett. 106 (2011) 162303


Projected Reach for a ALP at JLab 22 GeV

$$\gamma + Pb \rightarrow a + Pb$$

$$a \rightarrow \gamma \gamma$$

JLab Eta Factory (JEF) Experiment at GlueX

- ♦ Simultaneously produce η/η' on LH₂ target with 8.4-11.7 GeV tagged photon beam via γ+p → η/η'+p
- Reduce non-coplanar backgrounds by detecting recoil protons with GlueX detector
- Upgraded Forward Calorimeter with High resolution, high granularity
 PbWO₄ insertion (FCAL-II) to detect multi-photons from the η/η' decays
- The GlueX detector will detect the charged products from the η/η' decays.

Main JEF Physics Objectives

1. Search for sub-GeV hidden bosons

vector:

Leptophobic vector B'

$$\eta, \eta' \to B' \gamma \to \pi^0 \gamma \gamma$$
, (0.14 < $m_{B'}$ < 0.62 GeV);
 $\eta' \to B' \gamma \to \pi^+ \pi^- \pi^0 \gamma$, (0.62 < $m_{B'}$ < 1 GeV).

• Hidden or dark photon: $\eta, \eta' \to X\gamma \to e^+e^-\gamma$.

scalar S:
$$\eta \to \pi^0 S \to \pi^0 \gamma \gamma$$
, $\pi^0 e^+ e^-$, (10 MeV $< m_S < 2m_\pi$); $\eta, \eta' \to \pi^0 S \to 3\pi$, $\eta' \to \eta S \to \eta \pi \pi$, $(m_S > 2m_\pi)$.

Axion-Like Particles (ALP): $\eta, \eta' \to \pi \pi a \to \pi \pi \gamma \gamma, \pi \pi e^+ e^-$

- 2. Directly constrain CVPC new physics: $\eta^{(\prime)} \rightarrow 3\gamma$, $\eta^{(\prime)} \rightarrow 2\pi^0\gamma$, $\eta^{(\prime)} \rightarrow \pi^+\pi^-\pi^0$ $\eta^{(\prime)} \rightarrow \pi^0e^+e^-$
- 3. Precision tests of low-energy QCD:
 - Interplay of VMD & scalar dynamics in ChPT: η → π⁰γγ η' → π⁰γγ
 - Transition Form Factors of $\eta^{(1)}$: $\eta^{(2)} \rightarrow e^+e^-\gamma$
 - Improve the light quark mass ratio via Dalitz distributions: $\eta \rightarrow 3\pi$

Example of a Key Channel: $\eta \rightarrow \pi^0 \gamma \gamma$

HOWEN PRIESE DARK SECTORS?

Standard Model: $SU(3) \times SU(2) \times U(1)$

Dark Sector:
Gauge Interactions?
Dark matter?

Portal: (n = 4)

vector $\kappa B^{\mu\nu}V_{\mu\nu}$

Scalar $H^+H(\varepsilon S + \lambda S^2)$

fermion *ξLHN*

Search for sub-GeV gauge bosons

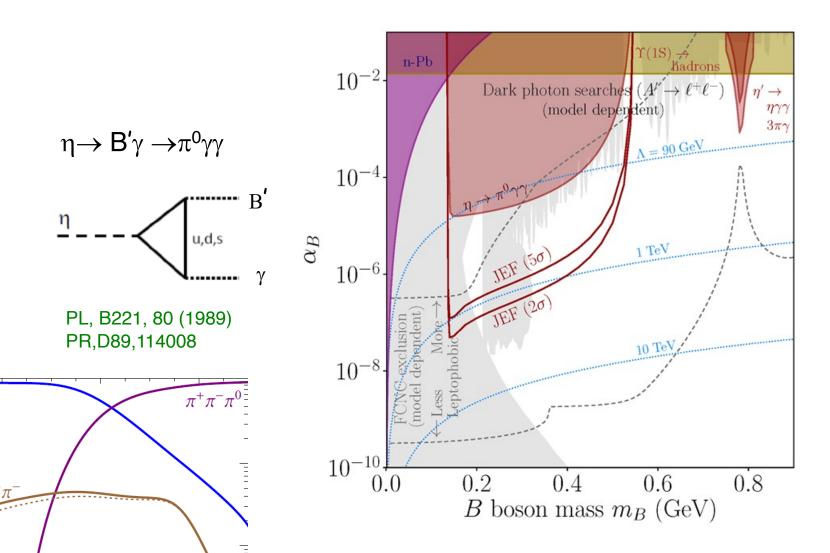
A leptophobic vector B':

$$\eta \rightarrow \gamma B'$$
, $B' \rightarrow \pi^0 \gamma$ PR,D89,114008

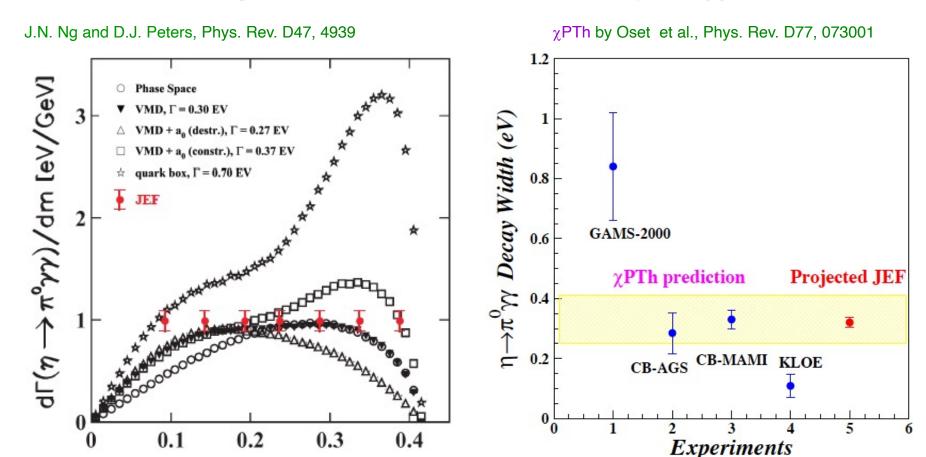
An electrophobic scalar Φ':

$$\eta \rightarrow \pi^0 \Phi', \Phi' \rightarrow \gamma \gamma$$

PRL 117,101801 (2016); PL B740,61(2015)


14

2. Confinement QCD:

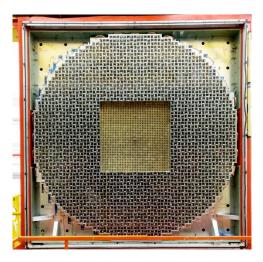

❖ A rare window to probe interplay of VMD & scalar resonance in ChPT

JEF Experimental Reach for B'

A search for a leptophobic dark B' boson coupled to baryon number is complementary to ongoing searches for a dark photon

Projected JEF on SM Allowed $\eta \rightarrow \pi^0 \gamma \gamma$


We measure both BR and Dalitz distribution


 $m(\gamma\gamma)$ [GeV/c²]

- ◆model-independent determination of two LEC's of the O(p⁶) counter- terms
- ◆probe the role of scalar resonances to calculate other unknown O(p⁶) LEC's
 J. Bijnens, talk at AFCI workshop

Status of the JEF Experiment

- 1. Developed an upgraded FCAL-II with a PbWO₄ insert.
 - 1596 PbWO₄ modules are developed to replace ~400 Pbglass modules.
 - Installation of the upgraded FCAL-II is completed in the end of 2024.
 - Over 40 undergraduate students from 11 institutes were trained by involving in this project.

Undergraduate workforce

2. Commissioning of FCAL-II was successfully done in April 2025 and data production for physics is currently in progress.

Summary

- Light pseudoscalar mesons offer a sensitive probe to test fundamental symmetries and to search for new physics beyond the standard model.
- PrimEx Primakoff program

has been in progress @ 6&12 GeV

- ✓ The published PrimEx result on the π^0 lifetime provides a stringent test of low-energy QCD.
- ✓ Data collection on $\Gamma(\eta \to \gamma \gamma)$ was completed in 2022 and data analysis is in progress.
- \checkmark A new experiment on $F(\pi^0 \rightarrow \gamma^* \gamma)$ off a nuclear target is on the way.

future JLab 22 GeV upgrade will offer new opportunities

- ✓ New generation of Primakoff experiments on $\Gamma(\pi^0 \to \gamma \gamma)$ and $F(\gamma^* \gamma \to \pi^0)$ off an atomic electron target.
- \checkmark Improve measurements of more massive particles, such as η and η' , off nuclear targets.
- ✓ Search for new sub-GeV gauge bosons (scalars and pseudoscalars).
- The JEF experiment has been taking data since April 2025 using newly upgraded FCAL-II calorimeter with a PbWO4 insert.
 - ✓ Search for sub-GeV hidden bosons: vector, scalar, and ALP
 - ✓ Directly constrain CVPC new physics
 - ✓ Precision tests of low-energy QCD: light quark mass ratio; the role of scalar dynamics in ChPT; transition form factors of η/η to calculate HLbL contributions in (g-2)_μ