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Figure 1: Hadronic contributions to (g�2)µ: (a) HVP, (b) HLbL. The pink blobs symbolize
hadronic intermediate states.

1 Introduction

Current Standard Model (SM) evaluations of the anomalous magnetic moment of the muon,
aµ = (g�2)µ/2, differ from the value measured at the Brookhaven National Laboratory [1]

a
exp
µ = 116 592 089(63)⇥ 10�11

, (1.1)

by around 3.5�. In the near future, the new Fermilab E989 experiment [2] will be able to
reduce the experimental uncertainty by a factor 4, and the E34 experiment at J-PARC [3]
will provide an important cross check, see ref. [4] for a comparison of the experimental
methods. Therefore, the theoretical calculation of aµ needs to be improved accordingly.

The uncertainty of the SM prediction mainly stems from hadronic contributions, such
as hadronic vacuum polarization (HVP), see figure 1 (a), and HLbL scattering, see fig-
ure 1 (b). Since the HVP contribution can be systematically calculated with a data-driven
dispersive approach [5–9], lattice QCD [10–16], and potentially be accessed independently
by the proposed MUonE experiment [17, 18], which aims to measure the space-like fine-
structure constant ↵(t) in elastic electron–muon scattering, the HLbL contribution may end
up dominating the theoretical error.1

Apart from lattice QCD [27–29], recent data-driven approaches towards HLbL scat-
tering are again rooted in dispersion theory, either for the HLbL tensor [30–35], the Pauli

1Note that higher-order insertions of HVP [5, 19, 20] and HLbL [21] are already under sufficient control,
as are hadronic corrections in the anomalous magnetic moment of the electron, where recently a 2.5�

tension between the direct measurement [22] and the SM prediction [23] using the fine-structure constant
from Cs interferometry [24] emerged [25, 26].

– 1 –

Contribution PdRV(09) [471] N/JN(09) [472, 573] J(17) [27] Our estimate

⇡0, ⌘, ⌘0-poles 114(13) 99(16) 95.45(12.40) 93.8(4.0)
⇡,K-loops/boxes �19(19) �19(13) �20(5) �16.4(2)

S -wave ⇡⇡ rescattering �7(7) �7(2) �5.98(1.20) �8(1)

subtotal 88(24) 73(21) 69.5(13.4) 69.4(4.1)

scalars � � � �
� 1(3)tensors � � 1.1(1)

axial vectors 15(10) 22(5) 7.55(2.71) 6(6)
u, d, s-loops / short-distance � 21(3) 20(4) 15(10)

c-loop 2.3 � 2.3(2) 3(1)

total 105(26) 116(39) 100.4(28.2) 92(19)

Table 15: Comparison of two frequently used compilations for HLbL in units of 10�11 from 2009 and a recent update with our estimate. Legend:
PdRV = Prades, de Rafael, Vainshtein (“Glasgow consensus”); N/JN = Ny↵eler / Jegerlehner, Ny↵eler; J = Jegerlehner.

in Table 15.42 While the central values are all quite close to each other (the largest discrepancy is with the Glasgow
consensus, which, however, includes a large part of the short-distance contribution in the pseudoscalar poles) and all
compatible within errors, the largest improvement is in the uncertainty, which has been reduced by a factor 6 to 3.

The lower part of the table contains the remaining contributions, which still su↵er from significant uncertainties,
further separated into the contribution from light quarks as well as the c-loop. For these a comparison among di↵erent
evaluations is more di�cult, because model dependence is still a↵ecting all contributions (with the exception of the
short-distance contribution evaluated here). It is in this second part of the table that future progress will have to
happen.

We have described above how we obtained our final error estimate. Just for comparison, in PdRV [471] all errors
have been added in quadrature, in N/JN [472, 573] all errors have been added linearly, and in J [27] the errors have been
added in quadrature and then multiplied by a factor 2 to account for possible model uncertainties so far unaccounted
for.

We also briefly comment on the numbers in the recent review by Danilkin, Redmer, and Vanderhaeghen [626]. The
main di↵erence is their estimate of the pseudoscalar-pole contribution, 84(4) ⇥ 10�11, lower than our value by about
2.5�, which is incompatible with what we know about this contribution as explained in Sec. 4.4. The smaller value for
the PS-poles is compensated by the quark-loop contribution, 20(4) ⇥ 10�11, which is a bit larger than our estimate of
the short-distance contribution, leading to a central value, 87(13) ⇥ 10�11, very close to ours. The errors in Ref. [626]
are added linearly, but in particular the uncertainties for the axial-vectors and the short-distance contribution are much
smaller than ours, which is the main reason for their rather small total uncertainty.

The comparison discussed here clearly shows that there has been significant progress since the time of the Glasgow
consensus. The development of a more systematic approach to the calculation of the HLbL contribution has led to
improved estimates of several of the underlying contributions. The shifts in the central values are relatively moderate,
never larger than two sigmas with respect to older estimates, but the overall shift is quite significant and in the negative
direction, thus increasing the discrepancy with the measured value. Even more important than the shift in the central
value is our ability to make better uncertainty estimates. In some cases these have been drastically reduced with
respect to the time of the Glasgow consensus, but in some others a better theoretical understanding of the formalism
has led to a more cautious attitude. The upshot is that even taking a conservative approach we could bring the total
uncertainty down to about 20% of the central value and the prospects for an even further reduction in the coming
years, towards the 10% goal, are very good as will be sketched in the next subsection.

42To make a meaningful comparison, since the largest contribution among the scalars is due to the �/ f0(500), which is treated as a ⇡⇡ rescattering
e↵ect here, we have considered the contribution of the scalars of earlier evaluations in the line labeled “S -wave ⇡⇡ rescattering.” This is indeed
justified for the scalar contribution �6.8(2.0) ⇥ 10�11 in the ENJL model from Ref. [484], as confirmed in Ref. [666]. The �/ f0(500) is also
responsible for 50–80% of the value �6.0(1.2) ⇥ 10�11 from Ref. [27], depending on the mixing.
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and large parts of the two-pion intermediate states, both of which rely on data-driven approaches and are under good
control; (2) the model-dependent estimates for the sum of scalar, tensor, and axial-vector contributions, as well as
the impact of short-distance constraints; all of these still su↵er from significant uncertainties, which in the total have
been added linearly; (3) the c-quark contribution, which can be estimated using perturbative QCD, with a conservative
uncertainty estimate in view of the low scale and potential nonperturbative e↵ects. The final estimates for HLbL from
Table 15 (mainly based on Refs. [18–30] and, in addition to e+e� ! hadrons cross sections, the experimental input
from Refs. [90–109]) and HLbL at NLO [31] from Eq. (4.91) read as follows:

aHLbL
µ = (69.3(4.1) + 20(19) + 3(1)) ⇥ 10�11

= 92(19) ⇥ 10�11 , (8.7)

aHLbL, NLO
µ = 2(1) ⇥ 10�11 , (8.8)

where the first line gives the three pieces in the same order as discussed above and the total in the second line is
obtained by adding the central values of the three contributions and combining the errors in quadrature. The final
error is about 20% and is completely dominated by the model estimates of a numerically subdominant part of the
total.

The lattice determination of HLbL scattering is reviewed in Sec. 5. The lattice methodology for this quantity has
advanced significantly in the last years [110–116] and has now reached a mature stage, resulting in a calculation [32]
with reliable estimates of both statistical and systematic uncertainties (Eq. (5.49)):

aHLbL
µ = 78.7(30.6)stat(17.7)sys ⇥ 10�11 . (8.9)

There have been extensive checks between di↵erent groups working on the lattice HLbL as well as internal checks of
the calculations such as the regression against the leptonic loop or pion-pole contributions. These checks are explained
in detail in Sec. 5.

To obtain a recommendation for the full SM prediction we proceed as follows: for HLbL scattering, there is
excellent agreement between phenomenology and lattice QCD, to the extent that it is justified to consider a weighted
average. Taking into account that the lattice-QCD value does not include the c-quark loop, we first average the
light-quark contribution and add the c quark as estimated phenomenologically in the end. This produces

aHLbL
µ (phenomenology + lattice QCD) = 90(17) ⇥ 10�11 , (8.10)

and, using Eq. (8.8),

aHLbL
µ (phenomenology + lattice QCD) + aHLbL, NLO

µ = 92(18) ⇥ 10�11 . (8.11)

For HVP, the current uncertainties in lattice calculations are too large to perform a similar average and the future
confrontation of phenomenology and lattice QCD crucially depends on the outcome of forthcoming lattice studies.
For this reason, we adopt Eq. (8.3) as our final estimate, emphasizing that the uncertainty estimate already accounts
for the tensions in the e+e� data base. Combined with the QED and EW contributions, we obtain

aSM
µ = aQED

µ + aEW
µ + aHVP, LO

µ + aHVP, NLO
µ + aHVP, NNLO

µ + aHLbL
µ + aHLbL, NLO

µ

= 116 591 810(43) ⇥ 10�11 . (8.12)

This value is mainly based on Refs. [2–8, 18–24, 31–36], which should be cited in any work that uses or quotes
Eq. (8.12). It di↵ers from the Brookhaven measurement [1]

aexp
µ = 116 592 089(63) ⇥ 10�11 , (8.13)

where the central value is adjusted to the latest value of � = µµ/µp = 3.183345142(71) [751], by

�aµ := aexp
µ � aSM

µ = 279(76) ⇥ 10�11 , (8.14)
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Figure 1: Left: Comparison of HLbL evaluations, as quoted in Ref. [6], to earlier esti-
mates [42, 141–143] (orange) and a more recent lattice calculation [144] (open blue).
Right: Comparison of theoretical predictions of aµ with experiment [1, 5] (orange band),
adapted from Ref. [6]. Each data point represents a different evaluation of leading-order
HVP, to which the remaining SM contributions, as given in Ref. [6], have been added.
Red squares show data-driven results [21, 22, 42, 145]; filled blue circles indicate lattice-
QCD calculations that were taken into account in the WP20 lattice average [25–30, 32],
while the open ones show results published after the deadline for inclusion in that aver-
age [135, 146]; the purple triangle gives a hybrid of the two [26]. The SM prediction of
Ref. [6] is shown as the black square and gray band.

2 Data-driven evaluations of HVP

The data-driven evaluation of HVP relies on the master formula from Refs. [147, 148],
a dispersion relation that relates the leading-order HVP contribution aHVP, LO

µ to the to-
tal cross section for e+e� ! hadrons.1 The main challenges in converting the available
data [52–104] to the corresponding HVP integral include the combination of data sets in
the presence of tensions in the data base and the propagation and assessment of the re-
sulting uncertainties. For illustration, the contributions of the main exclusive channels and
the inclusive region from the compilations of Refs. [21, 22] are shown in Table 2.

In Ref. [6] a conservative merging procedure was defined to obtain a realistic assess-
ment of these underlying uncertainties. The procedure accounts for tensions among the
data sets, for differences in methodologies in the combination of experimental inputs, for
correlations between systematic errors, and includes constraints from unitarity and analyt-
icity [19–21, 149]. Further, the next-to-leading-order calculation from Ref. [150] suggests
that radiative corrections are under control at this level.

1The cross section is defined photon-inclusively, see Ref. [6], i.e., while aHVP, LO
µ is O(↵2), it contains, by

definition, one-photon-irreducible contributions of order O(↵3). This convention matches the one used in
lattice-QCD calculations.

4

Data-driven and lattice QCD predictions are consistent

⟹ 10% uncertainty feasible (by 2025) [Snowmass ’21]
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1 Introduction

Current Standard Model (SM) evaluations of the anomalous magnetic moment of the muon,
aµ = (g�2)µ/2, differ from the value measured at the Brookhaven National Laboratory [1]

a
exp
µ = 116 592 089(63)⇥ 10�11

, (1.1)

by around 3.5�. In the near future, the new Fermilab E989 experiment [2] will be able to
reduce the experimental uncertainty by a factor 4, and the E34 experiment at J-PARC [3]
will provide an important cross check, see ref. [4] for a comparison of the experimental
methods. Therefore, the theoretical calculation of aµ needs to be improved accordingly.

The uncertainty of the SM prediction mainly stems from hadronic contributions, such
as hadronic vacuum polarization (HVP), see figure 1 (a), and HLbL scattering, see fig-
ure 1 (b). Since the HVP contribution can be systematically calculated with a data-driven
dispersive approach [5–9], lattice QCD [10–16], and potentially be accessed independently
by the proposed MUonE experiment [17, 18], which aims to measure the space-like fine-
structure constant ↵(t) in elastic electron–muon scattering, the HLbL contribution may end
up dominating the theoretical error.1

Apart from lattice QCD [27–29], recent data-driven approaches towards HLbL scat-
tering are again rooted in dispersion theory, either for the HLbL tensor [30–35], the Pauli

1Note that higher-order insertions of HVP [5, 19, 20] and HLbL [21] are already under sufficient control,
as are hadronic corrections in the anomalous magnetic moment of the electron, where recently a 2.5�

tension between the direct measurement [22] and the SM prediction [23] using the fine-structure constant
from Cs interferometry [24] emerged [25, 26].
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Contribution PdRV(09) [471] N/JN(09) [472, 573] J(17) [27] Our estimate

⇡0, ⌘, ⌘0-poles 114(13) 99(16) 95.45(12.40) 93.8(4.0)
⇡,K-loops/boxes �19(19) �19(13) �20(5) �16.4(2)

S -wave ⇡⇡ rescattering �7(7) �7(2) �5.98(1.20) �8(1)

subtotal 88(24) 73(21) 69.5(13.4) 69.4(4.1)

scalars � � � �
� 1(3)tensors � � 1.1(1)

axial vectors 15(10) 22(5) 7.55(2.71) 6(6)
u, d, s-loops / short-distance � 21(3) 20(4) 15(10)

c-loop 2.3 � 2.3(2) 3(1)

total 105(26) 116(39) 100.4(28.2) 92(19)

Table 15: Comparison of two frequently used compilations for HLbL in units of 10�11 from 2009 and a recent update with our estimate. Legend:
PdRV = Prades, de Rafael, Vainshtein (“Glasgow consensus”); N/JN = Ny↵eler / Jegerlehner, Ny↵eler; J = Jegerlehner.

in Table 15.42 While the central values are all quite close to each other (the largest discrepancy is with the Glasgow
consensus, which, however, includes a large part of the short-distance contribution in the pseudoscalar poles) and all
compatible within errors, the largest improvement is in the uncertainty, which has been reduced by a factor 6 to 3.

The lower part of the table contains the remaining contributions, which still su↵er from significant uncertainties,
further separated into the contribution from light quarks as well as the c-loop. For these a comparison among di↵erent
evaluations is more di�cult, because model dependence is still a↵ecting all contributions (with the exception of the
short-distance contribution evaluated here). It is in this second part of the table that future progress will have to
happen.

We have described above how we obtained our final error estimate. Just for comparison, in PdRV [471] all errors
have been added in quadrature, in N/JN [472, 573] all errors have been added linearly, and in J [27] the errors have been
added in quadrature and then multiplied by a factor 2 to account for possible model uncertainties so far unaccounted
for.

We also briefly comment on the numbers in the recent review by Danilkin, Redmer, and Vanderhaeghen [626]. The
main di↵erence is their estimate of the pseudoscalar-pole contribution, 84(4) ⇥ 10�11, lower than our value by about
2.5�, which is incompatible with what we know about this contribution as explained in Sec. 4.4. The smaller value for
the PS-poles is compensated by the quark-loop contribution, 20(4) ⇥ 10�11, which is a bit larger than our estimate of
the short-distance contribution, leading to a central value, 87(13) ⇥ 10�11, very close to ours. The errors in Ref. [626]
are added linearly, but in particular the uncertainties for the axial-vectors and the short-distance contribution are much
smaller than ours, which is the main reason for their rather small total uncertainty.

The comparison discussed here clearly shows that there has been significant progress since the time of the Glasgow
consensus. The development of a more systematic approach to the calculation of the HLbL contribution has led to
improved estimates of several of the underlying contributions. The shifts in the central values are relatively moderate,
never larger than two sigmas with respect to older estimates, but the overall shift is quite significant and in the negative
direction, thus increasing the discrepancy with the measured value. Even more important than the shift in the central
value is our ability to make better uncertainty estimates. In some cases these have been drastically reduced with
respect to the time of the Glasgow consensus, but in some others a better theoretical understanding of the formalism
has led to a more cautious attitude. The upshot is that even taking a conservative approach we could bring the total
uncertainty down to about 20% of the central value and the prospects for an even further reduction in the coming
years, towards the 10% goal, are very good as will be sketched in the next subsection.

42To make a meaningful comparison, since the largest contribution among the scalars is due to the �/ f0(500), which is treated as a ⇡⇡ rescattering
e↵ect here, we have considered the contribution of the scalars of earlier evaluations in the line labeled “S -wave ⇡⇡ rescattering.” This is indeed
justified for the scalar contribution �6.8(2.0) ⇥ 10�11 in the ENJL model from Ref. [484], as confirmed in Ref. [666]. The �/ f0(500) is also
responsible for 50–80% of the value �6.0(1.2) ⇥ 10�11 from Ref. [27], depending on the mixing.
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and large parts of the two-pion intermediate states, both of which rely on data-driven approaches and are under good
control; (2) the model-dependent estimates for the sum of scalar, tensor, and axial-vector contributions, as well as
the impact of short-distance constraints; all of these still su↵er from significant uncertainties, which in the total have
been added linearly; (3) the c-quark contribution, which can be estimated using perturbative QCD, with a conservative
uncertainty estimate in view of the low scale and potential nonperturbative e↵ects. The final estimates for HLbL from
Table 15 (mainly based on Refs. [18–30] and, in addition to e+e� ! hadrons cross sections, the experimental input
from Refs. [90–109]) and HLbL at NLO [31] from Eq. (4.91) read as follows:

aHLbL
µ = (69.3(4.1) + 20(19) + 3(1)) ⇥ 10�11

= 92(19) ⇥ 10�11 , (8.7)

aHLbL, NLO
µ = 2(1) ⇥ 10�11 , (8.8)

where the first line gives the three pieces in the same order as discussed above and the total in the second line is
obtained by adding the central values of the three contributions and combining the errors in quadrature. The final
error is about 20% and is completely dominated by the model estimates of a numerically subdominant part of the
total.

The lattice determination of HLbL scattering is reviewed in Sec. 5. The lattice methodology for this quantity has
advanced significantly in the last years [110–116] and has now reached a mature stage, resulting in a calculation [32]
with reliable estimates of both statistical and systematic uncertainties (Eq. (5.49)):

aHLbL
µ = 78.7(30.6)stat(17.7)sys ⇥ 10�11 . (8.9)

There have been extensive checks between di↵erent groups working on the lattice HLbL as well as internal checks of
the calculations such as the regression against the leptonic loop or pion-pole contributions. These checks are explained
in detail in Sec. 5.

To obtain a recommendation for the full SM prediction we proceed as follows: for HLbL scattering, there is
excellent agreement between phenomenology and lattice QCD, to the extent that it is justified to consider a weighted
average. Taking into account that the lattice-QCD value does not include the c-quark loop, we first average the
light-quark contribution and add the c quark as estimated phenomenologically in the end. This produces

aHLbL
µ (phenomenology + lattice QCD) = 90(17) ⇥ 10�11 , (8.10)

and, using Eq. (8.8),

aHLbL
µ (phenomenology + lattice QCD) + aHLbL, NLO

µ = 92(18) ⇥ 10�11 . (8.11)

For HVP, the current uncertainties in lattice calculations are too large to perform a similar average and the future
confrontation of phenomenology and lattice QCD crucially depends on the outcome of forthcoming lattice studies.
For this reason, we adopt Eq. (8.3) as our final estimate, emphasizing that the uncertainty estimate already accounts
for the tensions in the e+e� data base. Combined with the QED and EW contributions, we obtain

aSM
µ = aQED

µ + aEW
µ + aHVP, LO

µ + aHVP, NLO
µ + aHVP, NNLO

µ + aHLbL
µ + aHLbL, NLO

µ

= 116 591 810(43) ⇥ 10�11 . (8.12)

This value is mainly based on Refs. [2–8, 18–24, 31–36], which should be cited in any work that uses or quotes
Eq. (8.12). It di↵ers from the Brookhaven measurement [1]

aexp
µ = 116 592 089(63) ⇥ 10�11 , (8.13)

where the central value is adjusted to the latest value of � = µµ/µp = 3.183345142(71) [751], by

�aµ := aexp
µ � aSM

µ = 279(76) ⇥ 10�11 , (8.14)
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Figure 1: Left: Comparison of HLbL evaluations, as quoted in Ref. [6], to earlier esti-
mates [42, 141–143] (orange) and a more recent lattice calculation [144] (open blue).
Right: Comparison of theoretical predictions of aµ with experiment [1, 5] (orange band),
adapted from Ref. [6]. Each data point represents a different evaluation of leading-order
HVP, to which the remaining SM contributions, as given in Ref. [6], have been added.
Red squares show data-driven results [21, 22, 42, 145]; filled blue circles indicate lattice-
QCD calculations that were taken into account in the WP20 lattice average [25–30, 32],
while the open ones show results published after the deadline for inclusion in that aver-
age [135, 146]; the purple triangle gives a hybrid of the two [26]. The SM prediction of
Ref. [6] is shown as the black square and gray band.

2 Data-driven evaluations of HVP

The data-driven evaluation of HVP relies on the master formula from Refs. [147, 148],
a dispersion relation that relates the leading-order HVP contribution aHVP, LO

µ to the to-
tal cross section for e+e� ! hadrons.1 The main challenges in converting the available
data [52–104] to the corresponding HVP integral include the combination of data sets in
the presence of tensions in the data base and the propagation and assessment of the re-
sulting uncertainties. For illustration, the contributions of the main exclusive channels and
the inclusive region from the compilations of Refs. [21, 22] are shown in Table 2.

In Ref. [6] a conservative merging procedure was defined to obtain a realistic assess-
ment of these underlying uncertainties. The procedure accounts for tensions among the
data sets, for differences in methodologies in the combination of experimental inputs, for
correlations between systematic errors, and includes constraints from unitarity and analyt-
icity [19–21, 149]. Further, the next-to-leading-order calculation from Ref. [150] suggests
that radiative corrections are under control at this level.

1The cross section is defined photon-inclusively, see Ref. [6], i.e., while aHVP, LO
µ is O(↵2), it contains, by

definition, one-photon-irreducible contributions of order O(↵3). This convention matches the one used in
lattice-QCD calculations.

4

Data-driven and lattice QCD predictions are consistent

⟹ 10% uncertainty feasible (by 2025) [Snowmass ’21] ✅



PSEUDOSCALAR-POLE CONTRIBUTION

aP−pole
μ = ( α

π )
3

∫ dQ1dQ2dτ [w1(Q1, Q2, τ) FPγ*γ*(−Q2
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3)FPγ*γ(−Q2
2 ,0)
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2)FPγ*γ(−Q2
3 ,0)]

Figure 58: Weight function w1(Q1,Q2, 0) for ⇡0 (left) and ⌘0 (right); cf. Eq. (4.19). Reprinted from Ref. [19].

where a = 0, . . . , 8 is the corresponding flavor index associated to the Gell-Mann matrices �a, extended to include
�0 ⌘

p
2/3 diag(1, 1, 1), and h0| ja5µ|Pi ⌘ ipµFa

P with ja5µ = q̄�µ�5
�a

2 q. Away from the chiral limit, corrections arise
and ⌘–⌘0 mixing must be accounted for, see Refs. [575, 576] and references therein. The high-energy behavior can be
obtained by expanding the product of electromagnetic currents on the light-cone, obtaining at leading order in pQCD
and at leading-twist [577, 578]

FP�⇤�⇤ (�Q2
1,�Q2

2) =
X

a

2 Tr(Q2�a)Fa
P

Z 1

0
dx

�a
P(x)

xQ2
1 + (1 � x)Q2

2
. (4.22)

Higher-order corrections in pQCD have been derived as well [579, 580]. Since for large momenta �a
P(x) ! 6x(1 �

x) [578, 581], the following limits can be inferred

lim
Q2!1

Q2FP�⇤�⇤ (�Q2, 0) =
X

a

6 Tr(Q2�a)Fa
P

"
1 � �a0 2Nf

⇡�0
↵s(µ0)

#
, (4.23)

lim
Q2!1

Q2FP�⇤�⇤ (�Q2,�Q2) =
X

a

2 Tr(Q2�a)Fa
P

"
1 � �a0 2Nf

⇡�0
↵s(µ0)

#
, (4.24)

where we include �0 ⌘ 11Nc/3 � 2Nf /3, with Nf the number of e↵ective active flavors. The first limit is commonly
known as the Brodsky–Lepage (BL) limit [577, 578], while the latter can be rigorously obtained from the operator
product expansion (OPE) [582–585]. The ⌘ and ⌘0 cases receive important ↵s corrections due to the anomalous
dimension of the singlet axial current [586], which have been accounted for by the last factor [576, 587, 588]. Finally,
higher-order corrections have been calculated using the OPE, which, for the ⇡0, multiply Eq. (4.24) by (1 � 8

9
�2

Q2 ),
with the estimate �2 = 0.20(2) GeV2 determined from sum rules [583] already used in Refs. [18, 472, 573] and also
supported by lattice results [22, 589].

4.4.2. The pion pole in a dispersive approach
The central idea behind the dispersive analysis of the ⇡0 TFF [21, 493, 590] is to reconstruct this object from

its dominant low-energy singularities. As Fig. 58 (left) demonstrates, the main weight for the HLbL integration
in Eq. (4.19) lies in the region of Qi < 1 GeV; in this range, where a precise and reliable theoretical description is
therefore of prime importance, the intermediate states dominating the discontinuities in the two form factor virtualities
are given by two- and three-pion intermediate states. In particular, these discontinuities can be reconstructed from data
on e+e� ! 2⇡, 3⇡ and automatically contain the e↵ects of the lowest-lying resonances in these channels, the ⇢(770),
!(782), and �(1020), in a model-independent way. Beyond this dominant part constructed rigorously from dispersion
theory, two further pieces are added in order to fulfill all asymptotic constraints described in the previous section: an
e↵ective pole that parameterizes heavier intermediate states; and an asymptotic contribution constructed on the basis
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THE IDEA

Requirement: Lattice QCD and data-driven evaluations of pion 
transition form factors (TFFs) are consistent with each other

Idea: Combined analysis of lattice QCD and experimental data 

Motivation: further reduce (systematic and extrapolation) uncertainties

Singly-virtual region:

New BES-III data at lower virtualities ( ) [talk by Christoph]

Larger systematic uncertainties for lattice QCD at 

Doubly-virtual region:

No experimental data for  [talk by Christoph] 

5 data points for  and 1 data point for ’

Q2 ∼ 0.2 GeV2

Q2 < 0.5 GeV2

π

η η
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STATUS AND OUTLOOK

9

Received data from Lattice Group 
[talking to Harvey, Jonna and Georg]

“Reproducing” fits analogously 
to 1607.08174

Understanding how to work 
with the data

Collected world data for space-like pion TFF

Waiting for BES-III data [talking to Christoph]

Check consistency “lattice QCD” fit ↔ “experimental” data / fit

Combined LMD+V fit of lattice QCD & experimental data

No Mainz lattice QCD data from Mainz for  and ’

Possible extensions: BChPT (Scherer et al.), time-like data, dispersive analysis

η η



• Naomi Danaheb Navarro Durán (master student since April) 


→ first “naive” combined fit of LQCD and experimental pion TFF data; 


• Vladyslava Sharkovska (present RU PhD, March - August ‘25)


→ cross check of fits; prepare possible extension to  and 


• Sotiris Pitelis (future RU PhD, September ’25 - January ‘26)


→ fits beyond LMD+V; 3-particle production channel for Schwinger sum rule


• Timon Esser (master student)


→ spin-1 Compton scattering (LbL) sum rules, PWA


• Vadim Lensky 

→ spin-1 Compton scattering (LbL) sum rules, PWA, … 

η η′￼

People JRP-1: Pseudoscalar contributions to the 
muon g-2 from lattice QCD and BES-III data
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Thank you for your attention!



PSEUDOSCALAR TFF
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On-shell pseudoscalar ( ) transition form factor :

Normalized to the two-photon decay:

SDCs for pseudoscalar transition form factors (e.g., for the pion):

• Chiral Anomaly: 

• Brodsky-Lepage limit:

• Symmetric pQCD limit:

P = π0, η, η′￼ FPγ*γ*(q2
1 , q2

2)

i∫ d4x eiq1⋅x ⟨0 |T{jμ(x) jν(0)} |P(q1 + q2)⟩ = ϵμνρσqρ
1 qσ

2 FPγ*γ*(q2
1 , q2

2)

Γ(P → γγ) =
πα2M3

P

4
F2

Pγγ, FPγγ = FPγ*γ*(0,0)

Fπ0γγ(0,0) = −
1

4π2fπ
lim

Q2→∞
Fπ0γγ*(Q2) = −

2fπ
Q2

lim
Q2→∞

Fπ0γ*γ*(Q2, Q2) = −
2fπ

3Q2



PION TFF — DISPERSIVE APPROACH
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Dispersive part:

                         

with 

Asymptotic contribution to ensure pQCD limit:

Effective pole ( ) parametrising heavier intermediate states:

Fπ0γ*γ* = Fdisp
π0γ*γ* + Feff

π0γ*γ* + Fasym
π0γ*γ*

Fdisp
π0γ*γ*(−Q2

1 , − Q2
2) = Fdisp

vs (−Q2
1 , − Q2

2) + Fdisp
vs (−Q2

2 , − Q2
1) =

1
π2 ∫

siv

4M2
π

dx∫
sis

sthr

dy
ρ(x, y)

(x + Q2
1)(y + Q2

2)
+ {q1 ↔ q2}

ρ(x, y) =
(x /4 − M2

π)3/2

12π x
Im[(FV

π (x))* f1(x, y)]

Fasym
π0γ*γ*(−Q2

1 , − Q2
2) = 2fπ ∫

∞

sm

dx
Q2

1Q2
2

(x + Q2
1)2(y + Q2

2)2

Meff ∼ 1.5 − 2 GeV

Feff
π0γ*γ*(−Q2

1 , − Q2
2) =

geff

4π2fπ

M4
eff

(M2
eff + Q2

1)(M2
eff + Q2

2)

Dispersive analysis of π0 → γ∗γ∗

• isospin decomposition:

Fπ0γ∗γ∗(q21 , q
2
2) = Fvs(q

2
1 , q

2
2) + Fvs(q

2
2 , q

2
1)

• analyse the leading hadronic intermediate states:
Hoferichter et al. 2014

γ
(∗)
s

π0

γ∗v

π+

π−

γ
(∗)
v

π0

γ∗s

π+

π−

π0

◃ isovector photon: 2 pions

∝ pion vector form factor well known from e+e− → π+π−

× γ∗ → 3π P-wave amplitude Khuri–Treiman formalism

◃ isoscalar photon: 3 pions

B. Kubis, Hadronic light-by-light phenomenology – p. 32

M. Hoferichter, B.-L. Hoid, B. Kubis, 
S. Leupold, and S. P. Schneider, JHEP 
10, 141 (2018)
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