

Porject XYZ-Experiment

Yuping Guo(郭玉萍)

Worksho of Research unit FOR 5327

Jun 11-13 2025 St. Goar

Yuping Guo (Fudan University) @ Workshop of Research Unit FOR5327

Direct production and/or decay of an exotic non-vector state (X)

e⁺e⁻ production of an exotic vector state decaying into a vector quarkonium and light hadrons

Production of a non-vector quarkonium state in $e^+e^$ annihilation through a twophoton itermediate state

Objectives

- 1. A study of XYZ charmonium-like states using a dispersive formlism
 - Solution Analysis of the new data of $e^+e^- \rightarrow \pi\pi h_c$ at BESIII
 - \mathbb{P} PWA of the full BESIII $e^+e^- \rightarrow \pi\pi h_c$ data using dispersive techniques and determination of the spin and parity of the $Z_c(4020)$
 - \mathbb{P} PWA of the full BESIII data samples of the $e^+e^- \rightarrow \pi\pi(K\bar{K})J/\psi$ at cms energies of 4.23 and 4.26 GeV
- 2. Radiative transitions of vector charmina and bottomina using light-by-light sum rules
- 3. Production of non-vector resonances in e^+e^- annihilation via two-photon production
 - Solutions Energy scan around the χ_{c2} resonance and feasibility studies for XYZ scans

• Quark Model [1964 by Gell-Mann and Zweig]

• Exotic hadrons:

C. Z. Yuan, S. L. Olsen, Nature Reviews Physics 1, 480 (2019)

A SCHEMATIC MODEL OF BARYONS AND MESONS *

Lowest Configuration!

M. GELL-MANN

California Institute of Technology, Pasadena, California

Received 4 January 1964

anti-triplet as anti-quarks q. Baryons can now be constructed from quarks by using the combinations (qqq), $(qqqq\bar{q})$, etc., while mesons are made out of $(q\bar{q})$, $(qq\bar{q}\bar{q})$, etc. It is assuming that the lowest baryon configuration (qqq) gives just the representations 1, 8, and 10 that have been observed, while the lowest meson configuration $(q \bar{q})$ similarly gives just 1 and 8.

Charmonium Spectroscopy

Beijing Electron Positron Collider II and BESIII

Solenoid Magnet: 0.9/1.0 T

RPC: 9 layers SC Solenoid Barrel ToF Endcap ToF SC Quadrupole

TOF

σ_T:80 ps 110 ps (60 ps)

MDC

dE/dx: 6% σ_p/p: 0.5% at 1GeV/c_ **MUC** $\sigma_{R\Phi}$: 2 cm

EMC

∆E/E: at 1GeV 2.5% 5.0% σ_Z: 0.6 cm/√E

BESIII Data Samples

BESIII Data Samples

Objectives

- 1. A study of XYZ charmonium-like states using a dispersive formlism
 - Solution Analysis of the new data of $e^+e^- \rightarrow \pi\pi h_c$ at BESIII
 - \mathbb{P} PWA of the full BESIII $e^+e^- \rightarrow \pi\pi h_c$ data using dispersive techniques and determination of the spin and parity of the $Z_c(4020)$
 - \mathbb{P} PWA of the full BESIII data samples of the $e^+e^- \rightarrow \pi\pi(K\bar{K})J/\psi$ at cms energies of 4.23 and 4.26 GeV
- 2. Radiative transitions of vector charmina and bottomina using light-by-light sum rules
- 3. Production of non-vector resonances in e^+e^- annihilation via two-photon production
 - Solutions Energy scan around the χ_{c2} resonance and feasibility studies for XYZ scans

$$\pi^{+}$$

- π^{-}
 $h_{c'} J^{PC} = 1^{-+}$

- The $e^+e^- \rightarrow \pi^+\pi^-h_c$ process was observed by CLEO at $\sqrt{s}=4.17$ GeV [10 σ] PRL107, 041803 (2011) • The process of $e^+e^- \rightarrow \pi^+\pi^-h_c$ was studied by BESIII at \sqrt{s} from 3.9 to 4.42 GeV, a charged
- charmonium-like state, $Z_c(4020)$ was observed in the πh_c system PRL 111, 242001 (2013)
- The cross section of $e^+e^- \rightarrow \pi^+\pi^-h_c$ was measured by BESIII at \sqrt{s} from 3.9 to 4.6 GeV, two resonant structures were observed PRL118, 092002 (2017)
- New data (27 data samples) between \sqrt{s} =4.18 to 4.95 GeV has been collected by BESIII

Test of resonance structures:

- Starting with two coherent BWs, add one more BW, two
 - more BWs, one more BW and a continuum term
- Check significance of each additional term
- Solution Baseline model: $\sigma^{\text{dressed}} = |BW_1 + BW_2e^{i\phi_2} + BW_3e^{i\phi_3}|^2$
- Significance of the third resonance: 5.4σ
- Significance of additional contribution smaller than 1σ

The cross section betweem 4.3 and 4.45 GeV exhibits a plateau-like shape and drops sharply around 4.5 GeV

 R_3

ance	Parameter	this measurement (3BW)	this measurement (2BW)	previous measurement
-	$M ({ m MeV}/c^2)$	$4223.6^{+3.6+2.6}_{-3.7-2.9}$	4219.7 ± 3.4	$4218.4 \pm 4.0 \pm 0.9$
	$\Gamma_{\rm tot}~({ m MeV})$	$58.5^{+10.8+6.7}_{-11.4-6.5}$	83.8 ± 5.5	$66.0\pm9.0\pm0.4$
2	$M ({ m MeV}/c^2)$	$ 4327.4^{+20.1+10.7}_{-18.8-9.3} $	4382.6 ± 6.0	$4391.6 \pm 6.3 \pm 1.0$
	$\Gamma_{\rm tot}~({ m MeV})$	$244.1^{+34.0+23.9}_{-27.1-18.0}$	163.1 ± 10.4	$139.5 \pm 16.1 \pm 0.6$
3	$M ({ m MeV}/c^2)$	$4467.4^{+7.2+3.2}_{-5.4-2.7}$	—	4421 ± 4
	$\Gamma_{\rm tot}~({ m MeV})$	$62.8^{+19.2+9.8}_{-14.4-6.6}$	—	62 ± 20
				(from PDG)
	χ^2/ndf	41.9/70	78.5/66	_

- Parameters of R_1 consistent with previous measurement and $\psi(4230)$
- Mass of R_2 consistent with $\psi(4360)$, but width much broader
- Parameters of R_3 consistent with $\psi(4500)$, and a hybrid state PRD107, 054034 (2023)
- No obvious resonance structure is found at around $\psi(4660)$
- $\ln S D$ mixing scheme, 4S 3D, 5S 4Dstates are located in this mass region, only three stuctures are observed in this mode PRD99, 114003 (2019)
- Mass of R_2/R_3 compatible with $\psi(3D)$ PRD100, 074016 (2019)

Resonance	Parameter	this measurement (3BW)	this measurement (2BW)	previous measurement
R_1	$M \; ({ m MeV}/c^2)$	$4223.6^{+3.6+2.6}_{-3.7-2.9}$	4219.7 ± 3.4	$4218.4 \pm 4.0 \pm 0.9$
	$\Gamma_{\rm tot}~({ m MeV})$	$58.5^{+10.8+6.7}_{-11.4-6.5}$	83.8 ± 5.5	$66.0\pm9.0\pm0.4$
R_2	$M \; ({ m MeV}/c^2)$	$4327.4\substack{+20.1+10.7\\-18.8-9.3}$	4382.6 ± 6.0	$4391.6 \pm 6.3 \pm 1.0$
	$\Gamma_{\rm tot}~({ m MeV})$	$244.1_{-27.1-18.0}^{+34.0+23.9}$	163.1 ± 10.4	$139.5 \pm 16.1 \pm 0.6$
R_3	$M \; ({ m MeV}/c^2)$	$4467.4^{+7.2+3.2}_{-5.4-2.7}$	—	4421 ± 4
	$\Gamma_{\rm tot}~({ m MeV})$	$62.8^{+19.2+9.8}_{-14.4-6.6}$	—	62 ± 20
				(from PDG)
	χ^2/ndf	41.9/70	78.5/66	—

Objectives

- 1. A study of XYZ charmonium-like states using a dispersive formlism
 - Solution Analysis of the new data of $e^+e^- \rightarrow \pi\pi h_c$ at BESIII
 - \mathbb{P} PWA of the full BESIII $e^+e^- \rightarrow \pi\pi h_c$ data using dispersive techniques and determination of the spin and parity of the $Z_c(4020)$
 - \mathbb{P} PWA of the full BESIII data samples of the $e^+e^- \rightarrow \pi\pi(K\bar{K})J/\psi$ at cms energies of 4.23 and 4.26 GeV
- 2. Radiative transitions of vector charmina and bottomina using light-by-light sum rules
- 3. Production of non-vector resonances in e^+e^- annihilation via two-photon production
 - Solutions Energy scan around the χ_{c2} resonance and feasibility studies for XYZ scans

PWA of $e^+e^- \rightarrow \pi^+\pi^-h_c$

- In 2013, $Z_c(4020)$ was observed in $e^+e^- \rightarrow \pi Z_c(4020)(\rightarrow \pi h_c)$ process
- A search for $Z_c(3900)$ in the same decay channel showed a statistical significance of 2.1σ
- Three data samples: 4230, 4260, 4360, with a integrated luminosity of 2.46 fb⁻¹

PRL 111, 242001 (2013)

- Mass and width of $Z_c(4020)$ determined from fit to $M(\pi h_c)$
 - $M = 4022.9 \pm 0.8 \pm 2.7 \text{ MeV}/c^2$
- Quantum number of $Z_c(4020)$ not determined

Data Samples for PWA

data point	\sqrt{s} (GeV)	$\mathcal{L}(pb^{-1})$	$N_{ m h_c}$	σ^{di}
4180	4.178	3192	698 ± 41	13.8 ± 0.8
4190	4.189	570	158 ± 19	17.7 ± 2.1
4200	4.199	526	178 ± 19	21.3 ± 2.3
4210	4.209	517	234 ± 21	29.1 ± 2.7
4220	4.219	515	342 ± 24	42.4 ± 2.9
4230	4.226	1101	847 ± 38	46.3 ± 2.1
4237	4.236	530	393 ± 26	43.8 ± 2.9
4246	4.244	538	377 ± 26	40.7 ± 2.8
4260	4.258	828	569 ± 32	38.9 ± 2.2
4270	4.267	531	370 ± 26	39.8 ± 2.8
4280	4.278	176	111 ± 14	37.0 ± 4.7
4290	4.287	502	302 ± 24	36.8 ± 2.9
4315	4.311	501	328 ± 26	39.6 ± 3.1
4340	4.337	505	381 ± 27	44.0 ± 3.1
4360	4.358	544	472 ± 28	48.3 ± 2.9
4380	4.377	523	424 ± 27	46.7 ± 3.0
4400	4.395	508	411 ± 27	46.6 ± 3.1
4420	4.416	1091	831 ± 41	42.6 ± 2.1
4440	4.436	570	434 ± 29	$ 42.8 \pm 2.8$

Purity of the sample:~70%

 $\pm 2.3 \pm 4.1$

 $\pm 2.4 \pm 4.1$

$e^+e^- \rightarrow \pi^+\pi^-h_c$ Signal from Data

PWA Formalism

• A maximum likelihood fit to data, the negative log-likelihood funtion (NLL) defined as

$$-\ln = \sum_{i \in \text{sigRG}} \ln P(x_i) - w_{\text{bkg}} \sum_{j \in \text{sidRG}} \ln P(x_j),$$

• $P(x_i) = \frac{P(x_i)}{M} = \frac{(d\sigma/d\Phi)_i}{M}$, where μ_{MC} is the normalization factor calculated using a PHSP MC sample $\mu_{\rm MC}$ $\mu_{\rm MC}$ • The decay cross section $\frac{d\sigma}{d\Phi}$ is written in two set of formalism: covariant tensor formalism and helicity formalism PRD48, 1225(1993), PRD57, 431(1998)

 $P(x_i)$ is the probability to produce event *i* with a set of four-vector momentum $x_i = (p_{\pi^+}, p_{\pi^-}, p_{\gamma}, p_{\eta_c})$

B. S. Zou and D. V. Bugg, EPJA 16, 537-547 (2003)

PWA Formalism

$$\frac{d\sigma}{d\Phi} = \sum_{\lambda^*,\lambda} |A(\lambda_{\gamma^*},\lambda_{\gamma})|^2$$

$$\frac{d\sigma}{d\Phi} = \sum_{\lambda^*,\lambda} |A(\lambda_{\gamma^*},\lambda_{\gamma})|^2$$

$$A(\lambda_{\gamma^*},\lambda_{\gamma}) = \sum_{i=1}^n g_i A_i (\lambda_{\gamma^*},\lambda_{\gamma}), \lambda_{\gamma^*} = \pm 1, \lambda_{\gamma} = \pm 1$$

$$\frac{d\sigma}{A(\lambda_{\gamma^*},\lambda_{\gamma})} = \sum_{i=1}^n g_i A_i (\lambda_{\gamma^*},\lambda_{\gamma}), \lambda_{\gamma^*} = \pm 1, \lambda_{\gamma} = \pm 1$$

Propagator Models

• $\sigma/f_0(500)$ [parameters fixed]:

$$BW(s) = \frac{1}{M^2 - s - iM\Gamma_{\text{tot}}(s)}, \Gamma_{\text{tot}} =$$

OR using Omnès formalism presented by Viktoriia Ermolina

• $f_0(980)$ [parameters fixed]: For data samples with \sqrt{s} > 4.35 GeV $BW(s) = \frac{1}{M^2 - s - i(g_1 \rho_{\pi\pi}(s) + g_2 \rho_{K\bar{K}}(s))}$ BES: PLB607, 243-253 (2005)

• $Z_c(3900)/Z_c(4020)$:

$$BW(s) = \frac{1}{M^2 - s - iM\Gamma_{\text{tot}}}$$

samples above 4.20 GeV

Yuping Guo (Fudan University) @ Workshop of Research Unit FOR5327

 $= g_1 \frac{\rho_{\pi\pi}(s)}{\rho_{\pi\pi}(M)} + g_2 \frac{\rho_{4\pi}(s)}{\rho_{4\pi}(M)} \qquad D. V. Bugg, PLB 572, 1-7 (2003)$ BES: PLB 598, 149-158 (2004)

 \Im Parameters of $Z_c(3900)$ fixed to BESIII PWA result; determine the mass and width of $Z_c(4020)$ combing all data

BESIII, PWA of $\pi^+\pi^- J/\psi$, arXiv:2505.13222

Consistency Check of the Formalism

$$1^{--} \to \pi^{-} Z_{c}^{+}, Z_{c}^{+} \to \pi^{+} h_{c'}$$
$$h_{c} \to \gamma \eta_{c} \text{ with } J^{P} \text{ of } Z_{c} \text{ set to } 1^{+}$$

Consistency Check of the Formalism

Mass and Width of $Z_c(4020)$

Quantum Number of $Z_c(4020)$

• From $e^+e^- \rightarrow \pi^+\pi^-h_c$ channel

$P Z_c(4020)$	0) $-log(L)_{Z_c(4020)}$	$\Delta(-log(L)) (\text{over } 1^+)$
1+	66417.5	
1-	66579.4	-161.9
2+	66731.2	-313.7
2-	BES 66848.3	-430.8

Quantum Number of $Z_c(4020)$

• From a coupled-channel analysis of $e^+e^- \rightarrow \pi$ 4400 and 4420 data samples

$P Z_c(4020)$	0) $-log(L)_{Z_c(4020)}$	$\Delta(-log(L))$ (over 1 ⁺)
1+	66417.5	
1-	66579.4	-161.9
2^{+}	68731.2	-313.7
2-	BE 66848.3	-430.8

• From a coupled-channel analysis of $e^+e^- \rightarrow \pi^+\pi^- J/\psi$, $e^+e^- \rightarrow \pi^+\pi^- h_c$, and $e^+e^- \rightarrow \pi^+ D^{*0}D^{*-}$ using

Objectives

- 1. A study of XYZ charmonium-like states using a dispersive formlism
 - Solution Analysis of the new data of $e^+e^- \rightarrow \pi\pi h_c$ at BESIII
 - \mathbb{P} PWA of the full BESIII $e^+e^- \rightarrow \pi\pi h_c$ data using dispersive techniques and determination of the spin and parity of the $Z_c(4020)$
 - \mathbb{P} PWA of the full BESIII data samples of the $e^+e^- \rightarrow \pi\pi(K\bar{K})J/\psi$ at cms energies of 4.23 and 4.26 GeV
- 2. Radiative transitions of vector charmina and bottomina using light-by-light sum rules
- 3. Production of non-vector resonances in e^+e^- annihilation via two-photon production
 - Solutions Energy scan around the χ_{c2} resonance and feasibility studies for XYZ scans

Direct Production of C-even State

- The production rate is proportional to the electronic witdh of the state ($\Gamma_{\rho\rho}$)
- For χ_{c1} state:
 - 1. Unitarity limit: $\Gamma_{ee} > 0.04 \text{ eV}$ J. Laplan, J. H. Kühn, PLB78, 252 (1978)
 - 2. Vector Dominance Mpdel: $\Gamma_{ee} = 0.46 \text{ eV}$; OR $\Gamma_{ee} \sim 0.1 \text{ eV}$
 - 3. Non-Relativistic QCD: $\Gamma_{ee} \sim 0.1 \text{ eV}$; $0.33^{+0.37}_{-0.01} \text{ eV}$
- For χ_{c2} state:
 - 3. NRQCD: $\Gamma_{ee} \sim 0.1 \text{ eV}; 0.13^{+0.15}_{-0.01} \text{ eV}$
 - 4. $\Gamma_{\rho\rho} = 4.2 \text{ eV}$ H. Czyż, J. H. Kühn, S. Tracz, PRD94, 034033 (2016)

Direct production of C-even states go through a process with two virtual photons or neutral current

A. Denig, F. K. Guo, C. Hanhart, A. V. Nefediev, PLB736, 221 (2014)

Y. Jia, Q. C. Pan, arXiv:2411.18560

4. An updated analysis of 1, with interference with background process taken into accout: $\Gamma_{ee} = 0.43 \text{ eV}$

H. Czyż, J. H. Kühn, S. Tracz, PRD94, 034033 (2016)

χ_{c1} Scan Data Samples

Uncertainty of E_{cms} : ±0.05 MeV ; Beam energy spread: (736 ± 27) keV

Data ample	E _{cms} [GeV]*	Lumi. [1/pb]			
1	3.5080	181.79±0.04±1.04			
2	3.5097	39.29 <u>+</u> 0.02 <u>+</u> 0.22			
3	3.5104	$183.64 \pm 0.04 \pm 1.05$			
4	3.5146	$40.92 \pm 0.02 \pm 0.23$			
+ + + 3.514	++++++++++++++++++++++++++++++++++++	× × × 518 3.52			

Analysis Strategy

- Signal process: $e^+e^- \rightarrow \chi_{c1}, \chi_{c1} \rightarrow \gamma J/\psi (Br: 34\%), J/\psi \rightarrow \mu^+\mu^- (Br: 6\%)$
- Irreducible background process: ISR production of $(J/\psi + \mu^+\mu^-)$
- Validate the description of the ISR background simulated with PHOKHARA generator by using
 - Solution High statistics data samples at $\psi(3770)$ and at $\sqrt{s} = 4.178$ GeV, ~3 fb⁻¹ each Validated and 2D **Correction Applied**
 - Solution Off-peak data samples at $\sqrt{s} = 3.581$ and 3.670 GeV, ~85 pb⁻¹ each
- Check $e^+e^- \rightarrow \chi_{c1}$ signal by searching for excess (reduction) of events beyond ISR background
- Study of interference pattern by combing the four data samples
 - Solution No interference: excess of events at 3rd point (χ_{c1} nominal mass)
 - With interference (if as predicted by PRD94, 034033 (2016)): excess of events at 1st and 2nd points, reduction at 4th point

$M(\mu^+\mu^-)$ at χ_{c1} Scan Data Samples

Determination of $\Gamma_{ee}(\chi_{c1})$

PRL129, 122001 (2022)

Combined significance: 5.1σ

• In 2024, ~120 ${\rm pb}^{-1}$ at $\sqrt{s} = 3.554$ GeV was taken □ If the $Γ_{ee}(\chi_{c2})$ is 4.2 eV ⇒ significance of signal >5σ

H. Czyż, J. H. Kühn, S. Tracz, PRD94, 034033 (2016)

Run plan 2025–2026

No dedicated synchrotron runs any more: 9–10 months of physics running for us per year!

Jan Mar 2025 – Jul 2025 (round 18)	۵. 2 × 10 ³	32	
Recover machine operation, scrub vac	cuum,	1.0 1.5 2.0	2.5
collect sufficient quantity of tracks		Beam energy (GeV)	
to commission, align and calibrate C	Energy (GeV)	Luminosity (pb ⁻¹)	Days
Stay on ψ' peak	3.554	600	16
BEPCII-LI: demonstrate operation at	3.558	200	6
Run at 4680 MeV — start collecting	3.560	300	8
	1 1 \		

Scans around X(3872) and χ_{c2} (about one month each)

SP Report | W. Gradl | 7

Summary and Outlook

- 1. A study of XYZ charmonium-like states using a dispersive formlism
 - \square Analysis of the new data of $e^+e^- \rightarrow \pi\pi h_c$ at BESIII
 - of the $Z_c(4020)$ *Close to finish the analysis*
 - \mathbb{P} PWA of the full BESIII data samples of the $e^+e^- \rightarrow \pi\pi(K\bar{K})J/\psi$ at cms energies of 4.23 and 4.26 GeV
- 2. Radiative transitions of vector charmina and bottomina using light-by-light sum rules
- 3. Production of non-vector resonances in e^+e^- annihilation via two-photon production
 - Solutions Energy scan around the χ_{c2} resonance and feasibility studies for XYZ scans

arXiv: 2504.04096

 \cong PWA of the full BESIII $e^+e^- \rightarrow \pi \pi h_c$ data using dispersive techniques and determination of the spin and parity

 χ_{c1} published in 2022 part of χ_{c2} data has been taken

Summary and Outlook

- 1. A study of XYZ charmonium-like states using a dispersive formlism
 - \blacksquare Analysis of the new data of $e^+e^- \rightarrow \pi\pi h_c$ at BESIII
 - of the $Z_c(4020)$ *Close to finish the analysis*
 - \mathbb{P} PWA of the full BESIII data samples of the $e^+e^- \rightarrow \pi\pi(K\bar{K})J/\psi$ at cms energies of 4.23 and 4.26 GeV
- 2. Radiative transitions of vector charmina and bottomina using light-by-light sum rules
- 3. Production of non-vector resonances in e^+e^- annihilation via two-photon production
 - Solutions Energy scan around the χ_{c2} resonance and feasibility studies for XYZ scans

Thank you!

arXiv: 2504.04096

 \cong PWA of the full BESIII $e^+e^- \rightarrow \pi \pi h_c$ data using dispersive techniques and determination of the spin and parity

 χ_{c1} published in 2022 part of χ_{c2} data has been taken

2.4 Time schedule

Project	2022	2023	2024	2025	2
XY7-1	P\ Determ	NA of ee $\rightarrow \pi$ nination of spin Z _c (4020)	πh _c n/parity of		
		PWA of at c.m. ener	f ee $\rightarrow \pi\pi$ (Kk gies 4.23 and	<) J/ψ I 4.26 GeV	
XYZ-2	Radiative transitions of conventional charmonia and bottomonia				
	[χ _{c2} : Data taking an	scan d data analys	sis	
XYZ-3			Feasit for χ _{c1} (3 in γJ/ψ	oility study 3872) scan v channel	f

2026 2027 2028 2029

PWA of full data samples of ee $\rightarrow \pi\pi(KK) J/\psi$, $\pi\pi \psi(2S)$ below 4.6 GeV & Extension to ee $\rightarrow \pi\pi Y(nS)$

Radiative transitions of exotics

 $\chi_{c1}(3872)$ scan in $\gamma J/\psi$ channel Data taking and data analysis

Feasibility study for $f_1(1285)$ production via ISR

