Research Unit Report Exotic meson spectroscopy (Project XYZ)

Viktoriia Ermolina

Institut für Kernphysik, Johannes Gutenberg-Universität Mainz

11 – 13 June St. Goar, Workshop of Research Unit FOR5327

In collaboration with I. Danilkin, M. Vanderhaeghen, Y. Guo, T. Liu

RU: Project XYZ

Timeline

Directions:

 $\Upsilon(11020$

Υ(10860)

 $\Upsilon(10750)$

 $\Upsilon(4S)$

 $\Upsilon(3S)$

 $\Upsilon(2S)$

 $\Upsilon(1S)$

 $\eta_b(2S)$

 $\eta_b(1S)$

 0^{-}

10.5

10.0

9.5

m[GeV]

- Partial-wave analysis (PWA) of the full BESIII $e^+e^- \rightarrow \pi\pi h_c$ data using dispersive techniques and determination of the spin and parity of the $Z_c(4020)$ (XYZ-1)
- PWA of the full BESIII data samples of the $e^+e^- \rightarrow \pi\pi(K\overline{K})J/\psi$ at cms energies of 4.23 and 4.26 GeV (XYZ-1)
- Radiative transitions of vector charmonia and bottomonia using light-by-light (LBL) sum rules (XYZ-2)

 $Z_{b}(10650$

 $Z_{5}(10610)$

 $\Upsilon_2(1D)$

The spectrum of states in the $b\bar{b}$ sector

 $\chi_{b1}(3P)$

 $h_b(2P) = \chi_{b0}(2P) = \chi_{b1}(2P)$

<u> $h_b(1P)$ </u> $\chi_{b0}(1P)$ <u> $\chi_{b1}(1P)$ </u> $\chi_{b2}(1P)$

 $\chi_{\rm c0}(4700)$

 $\chi_{c0}(4500)$

Col(3860)

 $\chi_{c0}(1P)$

 $\chi_{c1}(4274)$

 $\chi_{c1}(4140)$

.(3872)

 $\chi_{c1}(1P) \xrightarrow{\chi_{c2}(1P)}$

 $\chi_{c2}(3930)$

(3823)

X(3842)

 $\psi(4660)$

 $\psi(4415)$ $---- \psi(4390) \\ \psi(4360)$

 $\psi(4230)$

 $\psi(4160)$

v(4040)

 $\psi(3770)$

 $J/\psi(1S)$

 $\eta_e(1S)$

 $h_c(1P)$

 $\eta_c(2S)$ $\psi(2S)$

 $4.5 - D^* \overline{D}_2^*$

 $D^* \overline{D}_1$

 $D\bar{D}_{2}^{*}$

 $D\bar{D}_1$

 $D^* \overline{D}^*$

 $D\bar{D}^*$

 $D\bar{D}$

m[GeV]

3.5

3.0

XYZ - 1: PWA of $e^+e^- \rightarrow \pi\pi(K\overline{K})J/\psi$

Motivation

- Perform a simultaneous PWA of the existing BESIII data on $e^+e^- \rightarrow \pi\pi J/\psi$ and $e^+e^- \rightarrow K\overline{K}J/\psi$, which is not included in BESIII:2017bua
- $f_0(500)$ and $f_0(980)$ imply dispersive treatment
- Analyze non-integrated acceptancy corrected data
- The ultimate goal to constrain more precisely the mass and the width of $Z_c(3900)$

Formalism

We build upon the Dalitz-plot decomposition (DPD) of JPAC:2019ufm

• Straightforward to consider any quantum number (QN) The amplitude for a 3-body decay $(I, \Lambda) \rightarrow \{\lambda\}$:

$$M_{\{\lambda\}}^{\Lambda} = \sum_{\nu} D_{\Lambda,\nu}^{J*}(\varphi_1, \theta_1, \varphi_{23}) \times O_{\{\lambda\}}^{\nu}(\{\sigma\})$$

Decay-plane orientation Dalitz-plot function •

Decay chain (23)1

Viktoriia Ermolina (JGU)

Model-independent factorization: Wigner D-function of Euler angles $(\varphi_1, \theta_1, \varphi_{23}) \times$ Mandelstam variables $\{\sigma\}$ function

Rotation connects the actual frame with the frame of calculation

Decay - product of subsequent 2-body decays

Decay chain (31)2

$$e^{+} \qquad f_{0}(980) \qquad f_{0}(500) \\ \pi(K) \\ \pi(\overline{K}) \\ e^{-} \qquad Z_{c}(3900) \qquad J/\psi$$

- 2 Incorporatable dispersive treatment
- Built-in access to angular dependencies

XYZ – 1: PWA of $e^+e^- \rightarrow \pi\pi(K\overline{K})J/\psi$

XYZ - 1: PWA of $e^+e^- \rightarrow \pi\pi(K\overline{K})J/\psi$

Formalism: Dispersive approach

- Incorporates final-state interaction $\pi\pi/K\overline{K}$ 2 Accurately reflects phase shifts 0
- Doesn't violate unitarity (unlike a combination of Breit-Wigner for $f_0(500)$ and B Flatte parametrization for $f_0(980)$)
- Use standard Muskhelishvili-Omnes formalism: contribution from crossed-channel rescattering (corresponds to 4 the left-hand cuts) can be absorbed just in the subtraction polynomial - minimum fit parameters Danilkin:2020kce

 $\pi. K$

XYZ - 1: PWA of $e^+e^- \rightarrow \pi\pi(K\overline{K})/\psi$

Formalism: Cross-section

 e^+

XYZ – 1: PWA of $e^+e^- \rightarrow \pi\pi(K\overline{K})J/\psi$

Viktoriia Ermolina (JGU)

12.06.2025

XYZ – 1: PWA of $e^+e^- \rightarrow \pi\pi(K\overline{K})J/\psi$

Results: Different QN

- Consider any QN of Z_c(3900): 1⁺, 1⁻, 2⁺, 2⁻, 0⁻
- Coupled-channel for $f_0(500)\&f_0(980)$
- Minimal partial wave in each vertex
- Still 5 fit parameters for any QN
- Invariant mass distribution differ insignificantly

1	- LS $(l's')$) combinations 0 ⁻	
$\gamma^* \to Z_c^\pm \pi^\mp$	(1,1)	$\gamma^* \to Z_c^{\pm} \pi^{\mp}$	(1,0)
$Z_c^\pm \to J/\psi\pi^\mp$	(1,1)	$Z_c^\pm \to J/\psi\pi^\mp$	(1,1)
2	-	2+	
$\gamma^* \to Z_c^\pm \pi^\mp$	(1,2), (3,2)	$\gamma^* \to Z_c^\pm \pi^\mp$	(2,2)
$Z_c^\pm \to J/\psi \pi^\mp$	(1,1), (3,1)	$Z_c^\pm \to J/\psi \pi^\mp$	(2,1)

Prospects

- Established and validated the formalism to determine resonant QN
- 2 Published & Ready-to-use Ermolina:2024uln
- **3** Full acceptancy-corrected data is required for the constraint of $Z_c(3900)$ mass and width

3 fixed parameters: mass and width of $Z_c(3900)$, scale parameter in Blatt-Weisskopf factor

1 Rescattering strongly affects 2 $\cos \theta_{Z_c}$ – symmetric the shape $\cos \theta_{I/\psi}$ – asymmetric

Only modulus is plotted in BESIII:2017bua - no full picture

Viktoriia Ermolina (JGU)

12.06.2025

XYZ - 1: PWA of $e^+e^- \rightarrow \pi\pi h_c$

Motivation

- The observation of $Z_c(4020)$ resonance at 3 data points of e^+e^- cms energies (along with $Z_c(3900)$) BESIII:2013ouc
- Take a look into the nature of the exotic states, which do not fit in the conventional e^{-} . charmonium predictions
- Collaborative effort with Yuping Guo and Tong Liu
- The ultimate goal to determine spin and parity J^P of $Z_c(4020)$ from angular distributions

 $\chi^2 / N_{dof} = 1.0$

Formalism 1 Tho whole formalism established above can be used to study $Z_c(4020)$ IS(l's') combinations

	1+	1-	2-	2+		
$\gamma^* \to Z_c^\pm \pi^\mp$	(0,1), (2,1)	(1,1)	(1,2), (3,2)	(2,2)		
$Z_c^\pm \to h_c \pi^\mp$	(1,1)	(0,1), (2,1)	(2,1)	(1,1), (3,1)		
$\gamma^* \to f_0 h_c$	(1,1)	(1,1)	(1,1)	(1,1)		
$f_0 \to \pi^+ \pi^-$	(0,0)	(0,0)	(0,0)	(0,0)		

Application

- Breit-Wigner parametrization for $Z_c(3900) \& Z_c(4020) \xrightarrow{300}_{1}$
- dσ/dm_{ππ} 1 00 3 fit parameters – subtraction constant a and LS-coupling for each Z_c (for the minimal fitting put b = 0)

 $\chi^2 / N_{dof} = 1.6$ $\chi^2/N_{dof} = 0.9$ Viktoriia Ermolina (JGU)

RU: Project XYZ

Ermolina:2024uln

Single channel dispersive approach for $f_0(500)$ 2

3 (4) fit parameters for any QN of $Z_c(4020)$ B + 1 (2) to include $Z_{c}(3900)$

subtraction constants a, b + 1 (2) LS -couplings (depending on a partial wave; others absorbed in normalization)

12.06.2025

XYZ - 1: PWA of $e^+e^- \rightarrow \pi\pi h_c$

Results

 $Z_c(4020) = 1^+$ is the dominating hypothesis

- Fitting the data with different QN hypotheses of $Z_c(4020)$: see talk of Yuping Guo
- **2** 3 formalisms were tested: conventional helicity formalism, DPD and covariant tensor formalism

XYZ - 2: LBL sum rules for quarkonia

Motivation

- Light-by-light sum rule (SR) has been tested for radiative transitions of low-lying bottomonium states
- Can be applied to charmonium states and not low-lying states
- The ultimate goal to investigate the nature of exotic states in the quarkonia spectra

¥(11020

Formalism

We build upon the formalism, established in Ananyev:2020uve

- **1** LBL sum rule: for the process $\gamma^* \gamma \to X$ (sum over all allowed final states) $\check{s_0}$
- 2 Unitarity allows to relate $\mathcal{I}_{\mathcal{M}}$ part of the helicity amplitude particle-production threshold $\gamma V \rightarrow \gamma V$ to the $X \rightarrow \gamma V$ or $V \rightarrow \gamma X$
- **3** Sum rule can be rewritten in terms of helicity radiative widths $\Gamma_{A=0,2}$
- Approximately 0 for each shell in non-relativistic model

Application

Pascalutsa:2012pr

m[GeV]

3.0

 $\eta_c(1S)$

The spectrum of states in the $b\bar{b}$ sector

total helicity cross-sections

real photon

virtual photon

Viktoriia Ermolina (JGU)

RU: Project XYZ

XYZ - 2: LBL sum rules for quarkonia

Application

SR for the charmonium shell (based on experimental data)

Thank you for your attention

Viktoriia Ermolina (JGU)

RU: Project XYZ

