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— Albert Einstein

IT IS THE THEORY THAT DECIDES 
WHAT WE CAN OBSERVE.  

”
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(up, down, strange and charm), in a lattice formulation that takes  
into account all dynamical effects. We also consider the tiny contribu-
tions of the bottom and top quarks, as discussed in Supplementary  
Information.

We compute aµ
LO HVP�  in the so-called time–momentum representa-

tion8, which relies on the following two-point function with zero 
three-momentum in Euclidean time t:
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quark fields, respectively, and the angle brackets stand for the 
QCD + QED expectation value to order e2. It is convenient to decompose 
G(t) into light, strange, charm and disconnected components, which 
have very different statistical and systematic uncertainties. Integrating 
the one-photon-irreducible part of the two-point function (equa-
tion (1)), G1γI, yields the LO-HVP contribution to the magnetic moment 
of the muon8–11:
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and where ω r r r r r r( ) = [ + 2 % ( + 4) ] / ( + 4)2 , α is the fine-structure 
constant in the Thomson limit and mµ is the muon mass. Because we 
consider only the LO-HVP contribution, for brevity we drop the super-
script and multiply the result by 1010, that is, aµ stands for �a ( 10µ

LO HVP 10 
in the following.

The subpercent precision that we are aiming for represents a huge 
challenge for lattice QCD. To reach that goal, we must address four 
critical issues: scale determination; noise reduction; QED and strong–
isospin symmetry breaking; and infinite-volume and continuum extrap-
olations. We discuss these one by one.

The first issue is scale determination. The quantity aµ depends 
on the muon mass. When computing equation (2) on the lattice, mµ 
must be converted into lattice units, amµ, where a is the lattice spac-
ing. A relative error of the lattice spacing propagates into about a 
twice-as-large relative error on aµ, so that a must be determined with a 
precision of few parts per thousand. We use the mass of the Ω baryon, 
MΩ = 1,672.45(29) MeV, from ref. 1 to set the lattice spacing, where the 
uncertainty in the parentheses denotes one standard deviation. We 
also use a scale based on the gradient flow from ref. 12, denoted as w0, 
to define an isospin decomposition of our observables. Although w0 
can be determined with sub-per-thousand precision on the lattice, it 
is inaccessible experimentally. In this work we determine the physical 
value of w0 by including QED and strong–isospin symmetry-breaking 
effects: w0 = 0.17236(29)stat(63)syst(70)tot fm, where the first error is 
statistical, the second is systematic and the third is the total error. 
In total, we reach a relative accuracy of 4‰, which is better than the 
error of the previous best determination13, the value of which agrees 
with ours. There the pion decay constant was used as experimental 
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Fig. 1 | Contributions to aµ, including examples of the corresponding 
Feynman diagrams. Solid lines are quarks and curly lines are photons. Gluons 
are not shown explicitly, and internal quark loops are shown only if they are 
attached to photons. Dots represent coordinates in position space, boxes 
denote the mass insertion relevant for strong–isospin symmetry breaking.  
The numbers give our result for each contribution; they correspond to our 

‘reference’ system size defined by Lref = 6.272 fm spatial and Tref = 9.408 fm 
temporal lattice extents. We also explicitly compute the finite-size corrections 
that must be added to these results, which are given separately in the lower 
right panel. The first error is the statistical and the second is the systematic 
uncertainty, except for the contributions for which only a single, total error is 
given. Central values are medians; errors are s.e.m.
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NEW STATE X(6900)
X(6900) at LHCb

[LHCb collaboration, 2020]  

No-interference 
fitting scenario

Interference 
fitting scenario

This state is interpreted as possibly the 
lightest fully-charmed tetraquark state. 

The following quantum numbers are 
considered for it in the literature on the 

tetraquark spectra:
𝐽𝑃𝐶 = 0++, 0− +, 1− +, 2++.
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Figure 1. Left: the X-resonance contribution to light-by-light scattering in ultraperipheral heavy-ion
collisions (crossed graphs are omitted). Right: the vector-meson-dominance (VMD) mechanism for the
two-photon decay.

(MC) code SuperChic v3.05 [26, 27]1 used in the original interpretation of the ATLAS data
[1], by including the X(6900) along with the well-known bottomonium states [28] pertinent
to this energy region, i.e. ηb(1S), ηb(2S), χb0(1P) and χb0(2P). Note that SuperChic v3.05
includes otherwise only the simplest perturbative-QCD contributions to LbL scattering, i.e.,
the quark-loop contribution. The next-to-leading order corrections were shown to contribute
at the order of few percent [29–31], which is negligible at the current level of experimental
precision.

The MC generator SuperChic, extended by X(6900), has been used to fit the resonance
parameters into the ATLAS LbL data. Given the mass and width of X(6900) from the LHCb
determination, we have determined the two-photon-decay width ΓX→γγ, with the assumption
that the total width is dominated by the di-J/ψ decay (i.e., Γtot " ΓX→J/ψ J/ψ). The fit has been
performed to the unfolded diphoton invariant mass spectrum of the ATLAS data. The CMS
data is not used in the present analysis since the corresponding spectrum is not unfolded.
We have explored both the scalar and pseudoscalar nature of X(6900), but the corresponding
results of the fit turn out to be indistinguishable at the current level of statistical accuracy.
The results for the two-photon width ΓX→γγ and the corresponding branching ratio are given
in Table 1, for the two scenarios (interference, no-interference) considered in Ref. [32]. The

Table 1. The two-photon width and the corresponding branching ratio of X(6900) obtained in [25] by
fitting the light-by-light scattering data of Ref. [1].

Parameter Interference No-interference

ΓX(6900)→γγ [keV] 67+15
−19 45+11

−14

B[X(6900) → γγ] 4.0+0.9
−1.1 × 10−4 5.6+1.3

−1.6 × 10−4

corresponding differential observables are shown on Fig. 2. The plots demonstrate that the
inclusion of the resonance improves the description of each of the observables.

The extracted width in Table 1 can be compared to estimates based on the vector meson
dominance (VMD) [33, 34] (see also [25] for more specifics), given in Table 2, for all three
newly discovered states, assuming they are scalar or pseudoscalar. One can see that VMD
predicts a much smaller branching ratio for X(6900) than required to remedy the ATLAS

1The most recent version concerning the LbL channel.
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The LHCb Collaboration has recently discovered a structure around 6.9 GeV in the double-J=ψ mass
distribution, possibly a first fully charmed tetraquark state Xð6900Þ. Based on vector-meson dominance
(VMD) such a state should have a significant branching ratio for decaying into two photons. We show that
the recorded LHC data for the light-by-light scattering may indeed accommodate for such a state, with a γγ
branching ratio of order of 10−4, which is larger even than the value inferred by the VMD. The spin-parity
assignment 0−þ is in better agreement with the VMD prediction than 0þþ, albeit not significantly at the
current precision. Further light-by-light scattering data in this region, clarifying the nature of this state,
should be obtained in the Run 3 and probably in the high-luminosity phase of the LHC (Run 4 etc.).
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I. INTRODUCTION

The ATLAS and CMS Collaborations have recently
made first experimental observations of light-by-light
(LbL) scattering in the ultra-peripheral Pb-Pb collisions
at the LHC [1,2]. The ATLAS Collaboration has sub-
sequently provided the most comprehensive dataset from
the LHC Run-2 [3], which shows a mild excess over the
Standard Model prediction centered on the diphoton
invariant mass region of 5 to 10 GeV (cf. Fig. 2 below).
A similar excess between 5–7 GeV of the diphoton
invariant mass was seen by CMS Collaboration [2] as well.
More recently, the LHCb Collaboration has observed a

structure in the di-J=ψ mass distribution [4] and interpreted
it as a new state, Xð6900Þ, with mass and di-J=ψ width
quoted in Table I. This state is possibly the lightest
fully charmed tetraquark state [5–9] (see also [10] for
review), and according to Refs. [11–21] can be a pseudo-
scalar P-wave state (JPC ¼ 0−þ), or a scalar S-wave state
(JPC ¼ 0þþ) (for the latter, see [22] or [23] in view of the
latest CMS results on di-J=ψ spectrum [24]). A possibility

for it to be a tensor meson (JPC ¼ 2þþ) is discussed in
[7,8,10,11,14,16,19–21,25,26]. In any of these cases, this
state would likely couple to two photons [27] and hence
contribute to the LbL scattering. In fact, the vector-meson
dominance (VMD) hypothesis provides a rather accurate
prediction for the two-photon decaywidth (X → γγ) in terms
of the di-J=ψ width (cf. Appendix). Note that in view of the
Landau-Yang theorem, studying the γγ → γγ channel will
reduce the amount of possible quantumnumbers ofXð6900Þ,
which are considered in several analyses (see, e.g., [13,28]).
In this workwe explore the possibility of the excess seen in

ATLAS experiment is due to the Xð6900Þ meson. The two-
photondecaywidthof this state can thenbedetermined froma
fit to thedata,with the resultingvalues shown in the last rowof
Table I. In what follows we describe our formalism for the
inclusion ofmesons in LbL scattering (Sec. II), the details and
results of the fit to ATLAS data (Sec. III), comparison with
VMD estimates (Sec. IV), and conclusions (Sec. V).

II. MESON EXCHANGE IN LIGHT-BY-LIGHT
SCATTERING

We start with outlining the formalism for the inclusion of
meson states into the LbL process. These states ought to be
added at the amplitude level. It is conventional to work with
helicity amplitudes Mλ1λ2λ3λ4ðs; t; uÞ, where λi ¼ %1 is the
helicity of each of the four photons and the Mandelstam
variables of the LbL scattering satisfy the kinematic
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Figure 1. Left: the X-resonance contribution to light-by-light scattering in ultraperipheral heavy-ion
collisions (crossed graphs are omitted). Right: the vector-meson-dominance (VMD) mechanism for the
two-photon decay.

(MC) code SuperChic v3.05 [26, 27]1 used in the original interpretation of the ATLAS data
[1], by including the X(6900) along with the well-known bottomonium states [28] pertinent
to this energy region, i.e. ηb(1S), ηb(2S), χb0(1P) and χb0(2P). Note that SuperChic v3.05
includes otherwise only the simplest perturbative-QCD contributions to LbL scattering, i.e.,
the quark-loop contribution. The next-to-leading order corrections were shown to contribute
at the order of few percent [29–31], which is negligible at the current level of experimental
precision.

The MC generator SuperChic, extended by X(6900), has been used to fit the resonance
parameters into the ATLAS LbL data. Given the mass and width of X(6900) from the LHCb
determination, we have determined the two-photon-decay width ΓX→γγ, with the assumption
that the total width is dominated by the di-J/ψ decay (i.e., Γtot " ΓX→J/ψ J/ψ). The fit has been
performed to the unfolded diphoton invariant mass spectrum of the ATLAS data. The CMS
data is not used in the present analysis since the corresponding spectrum is not unfolded.
We have explored both the scalar and pseudoscalar nature of X(6900), but the corresponding
results of the fit turn out to be indistinguishable at the current level of statistical accuracy.
The results for the two-photon width ΓX→γγ and the corresponding branching ratio are given
in Table 1, for the two scenarios (interference, no-interference) considered in Ref. [32]. The

Table 1. The two-photon width and the corresponding branching ratio of X(6900) obtained in [25] by
fitting the light-by-light scattering data of Ref. [1].

Parameter Interference No-interference

ΓX(6900)→γγ [keV] 67+15
−19 45+11

−14

B[X(6900) → γγ] 4.0+0.9
−1.1 × 10−4 5.6+1.3

−1.6 × 10−4

corresponding differential observables are shown on Fig. 2. The plots demonstrate that the
inclusion of the resonance improves the description of each of the observables.

The extracted width in Table 1 can be compared to estimates based on the vector meson
dominance (VMD) [33, 34] (see also [25] for more specifics), given in Table 2, for all three
newly discovered states, assuming they are scalar or pseudoscalar. One can see that VMD
predicts a much smaller branching ratio for X(6900) than required to remedy the ATLAS

1The most recent version concerning the LbL channel.
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• X(6900) was embedded 
into SuperChic v3.5 at the 
level of helicity amplitude 
as a scalar (pseudoscalar) 
exchange

• Background: QED, pQCD  
and bottomonium 
exchanges

The X(6900) state with LHCb parameters is fitted to the ATLAS data for LbL scattering

• Fit of the diphoton 
invariant mass spectrum

χ2/Nd.o.f. ≈ 0.6

constraint: sþtþu¼0. Thanks to the discrete (P, T, C)
symmetries only 5 of the 16 amplitudes are independent, e.g.,:
Mþþþþ,Mþ−−þ,Mþ−þ−,Mþþþ− andMþþ−−. Furthermore,
the crossing symmetry infers the following relation:

Mþþþþðs; t; uÞ ¼ Mþ−−þðt; s; uÞ ¼ Mþ−þ−ðu; t; sÞ: ð1Þ

The remaining two amplitudes are fully crossing invariant.
In what follows we consider spin-0 mesons, with parity

P ¼ þ (scalars) or P ¼ − (pseudoscalars). Their tree-level
contributions to the LbL amplitudes follow from a simple
effective Lagrangian (cf. Appendix), yielding the following
expressions:

MP
þþþþðs; t; uÞ ¼ −

16πs2Γγγ

m3ðs −m2Þ
; ð2aÞ

MP
þþþ−ðs; t; uÞ ¼ 0; ð2bÞ

MP
þþ−−ðs; t; uÞ

¼ −P
16πΓγγ

m

!
s

s −m2
þ t
t −m2

þ u
u −m2

"
; ð2cÞ

where P ¼ %1 stands for the parity of the state, m for the
mass, and Γγγ for the two-photon width.
The nonvanishing amplitudes are precisely the ones

entering the forward LbL scattering sum rules [29], and it
is useful to check the consistency of the above expressions
with the sum rules. We recall that the helicity amplitudes of
the forward (t ¼ 0) [or, equally, the backward (u ¼ 0)],
scattering of real photons satisfy exact sum rules [29,30]:

MþþþþðsÞþMþ−þ−ðsÞ¼
2s2

π

Z
∞

0
ds0

σ0ðs0Þþσ2ðs0Þ
s02−s2−i0þ

; ð3aÞ

MþþþþðsÞ −Mþ−þ−ðsÞ ¼
2s
π

Z
∞

0
ds0

s0½σ0ðs0Þ − σ2ðs0Þ'
s02 − s2 − i0þ

;

ð3bÞ

Mþþ−−ðsÞ ¼
2s2

π

Z
∞

0
ds0

σkðs0Þ − σ⊥ðs0Þ
s02 − s2 − i0þ

: ð3cÞ

where the right-hand side involves integrals of total γγ-fusion
cross sections for various photon polarizations. For the case
of γγ-fusion into a scalar or a pseudoscalar meson these cross
sections take the following simple form (see, e.g., [31,32]):

σ0ðsÞ ¼ 16π2
Γγγ

m
δðs −m2Þ; σ2ðsÞ ¼ 0; ð4aÞ

# σkðsÞ ¼ σ0ðsÞ; σ⊥ðsÞ ¼ 0; for scalar;

σ⊥ðsÞ ¼ σ0ðsÞ; σkðsÞ ¼ 0; for pseudoscalar:
ð4bÞ

Substituting these cross sections into the sum rules we
find that the contribution to Mþþþþ found in Eq. (2) is
reproduced by the first sum rule, but not the second one.
This inconsistency can be fixed by reducing the one power
of s in the expression (2), thus resulting in:

MP
þþþþðs; t; uÞ ¼ −

16πsΓγγ

mðs −m2Þ
: ð5Þ

This contribution is consistent with both sum rules and has a
betterhigh-energybehavior.Weshall use it inplaceofEq. (2a).
The contribution toMþþ−− in Eq. (2c) is consistent with

the sum rule (3c). As a side remark we note that it satisfies a
more general off-forward sum rule:

Mþþ−−ðs;t;uÞ

¼ 1

π

Z
∞

0
ds0½σkðs0Þ−σ⊥ðs0Þ'

!
s

s0−s
þ t
s0− t

þ u
s0−u

"
: ð6Þ

Any single-meson-exchange contribution to this LbL scat-
tering should satisfy this sum rule. However it does not hold
in a more general case—a subtraction function must be
added. A similar off-forward sum rule holds for the crossing-
invariant combinationMþþþþ þMþ−−þ þMþ−þ− and the
unpolarized cross section of γγ fusion. It also holds without
subtraction for the single-meson-exchange contributions.
Next step is the inclusion of the decaywidth. It can be done

by resumming the meson self-energy, ΠðsÞ, in s-channel
exchange contribution, such that the factors1=ðs −m2Þ in the
above expressions are replacedwith 1=ðs −m2 − ΠðsÞÞ. The
decay width then comes from the imaginary part of the self-
energy, i.e., ImΠðsÞ ¼ −

ffiffiffi
s

p
ΓðsÞ. The real part of the self-

energy contributes to the mass and field renormalization; any
further effects of the real part are neglected here. For the total
decay width of Xð6900Þ-meson we use below the energy-
dependent di-J=ψ width, as calculated in the Appendix.

III. FITTING Xð6900Þ INTO THE
LIGHT-BY-LIGHT DATA

We have extended the Monte-Carlo code SUPERCHIC

v3.05 [33,34]1 used in the original interpretation of the

TABLE I. The mass and di-J=ψ width of Xð6900Þ in the two
scenarios of Ref. [4], and the corresponding two-photon widths
obtained here by fitting the light-by-light scattering data of Ref. [3].

Parameter Interference No interference

mX [MeV] 6886% 11% 11 6905% 11% 7
ΓX→J=ψJ=ψ [MeV] 168% 33% 69 80% 19% 33

ΓX→γγ [keV] 67þ15
−19 45þ11

−14

TABLE II. Bottomonium resonances included in this work.

Meson JPC M, [MeV] Γtot, [MeV] Γγγ=Γtot [%]

ηbð1SÞ 0−þ 9399.0 17.9 5.87 × 10−3

ηbð2SÞ 0−þ 9999.0 8.34 5.86 × 10−3

χb0ð1PÞ 0þþ 9859.44 3.39 5.87 × 10−3

χb0ð2PÞ 0þþ 10232.5 3.54 5.41 × 10−3

1Although this is not the most recent version, subsequent
updates do not relate to LbL scattering.
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• Charmonium molecule structure  vector-meson dominance→

• Decay of diquark-antidiquark state

ΓX→γγ ∼ 0.1...1 keV

ΓX→γγ ∼ 10 keV

Two-photon decay width estimates
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symmetries only 5 of the 16 amplitudes are independent, e.g.,:
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The remaining two amplitudes are fully crossing invariant.
In what follows we consider spin-0 mesons, with parity
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contributions to the LbL amplitudes follow from a simple
effective Lagrangian (cf. Appendix), yielding the following
expressions:
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where P ¼ %1 stands for the parity of the state, m for the
mass, and Γγγ for the two-photon width.
The nonvanishing amplitudes are precisely the ones

entering the forward LbL scattering sum rules [29], and it
is useful to check the consistency of the above expressions
with the sum rules. We recall that the helicity amplitudes of
the forward (t ¼ 0) [or, equally, the backward (u ¼ 0)],
scattering of real photons satisfy exact sum rules [29,30]:
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where the right-hand side involves integrals of total γγ-fusion
cross sections for various photon polarizations. For the case
of γγ-fusion into a scalar or a pseudoscalar meson these cross
sections take the following simple form (see, e.g., [31,32]):
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Substituting these cross sections into the sum rules we
find that the contribution to Mþþþþ found in Eq. (2) is
reproduced by the first sum rule, but not the second one.
This inconsistency can be fixed by reducing the one power
of s in the expression (2), thus resulting in:
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Any single-meson-exchange contribution to this LbL scat-
tering should satisfy this sum rule. However it does not hold
in a more general case—a subtraction function must be
added. A similar off-forward sum rule holds for the crossing-
invariant combinationMþþþþ þMþ−−þ þMþ−þ− and the
unpolarized cross section of γγ fusion. It also holds without
subtraction for the single-meson-exchange contributions.
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exchange contribution, such that the factors1=ðs −m2Þ in the
above expressions are replacedwith 1=ðs −m2 − ΠðsÞÞ. The
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energy contributes to the mass and field renormalization; any
further effects of the real part are neglected here. For the total
decay width of Xð6900Þ-meson we use below the energy-
dependent di-J=ψ width, as calculated in the Appendix.

III. FITTING Xð6900Þ INTO THE
LIGHT-BY-LIGHT DATA

We have extended the Monte-Carlo code SUPERCHIC

v3.05 [33,34]1 used in the original interpretation of the

TABLE I. The mass and di-J=ψ width of Xð6900Þ in the two
scenarios of Ref. [4], and the corresponding two-photon widths
obtained here by fitting the light-by-light scattering data of Ref. [3].

Parameter Interference No interference

mX [MeV] 6886% 11% 11 6905% 11% 7
ΓX→J=ψJ=ψ [MeV] 168% 33% 69 80% 19% 33
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TABLE II. Bottomonium resonances included in this work.

Meson JPC M, [MeV] Γtot, [MeV] Γγγ=Γtot [%]

ηbð1SÞ 0−þ 9399.0 17.9 5.87 × 10−3

ηbð2SÞ 0−þ 9999.0 8.34 5.86 × 10−3
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•

• CMS Collaboration (2022), di-  J/ψ • ATLAS Collaboration (2022), di- , J/ψ J/ψ ψ(2S)
✓ X(6600) 6.5σ
✓ X(6900) 9.4σ
✓ X(7200) 4.1σ ✓ X(6900) >5σ ✓ X(7200) 3.2σ

di-J/ψ J/ψ ψ(2S)
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Two-photon decay of fully-charmed tetraquarks from
light-by-light scattering at the LHC
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Abstract. The LHC newly-discovered resonant structures around 7 GeV, such
as the X(6900), could be responsible for the observed excess in light-by-light
scattering between 5 and 10 GeV. We show that the ATLAS data for light-by-
light scattering may indeed be explained by such a state with the γγ branching
ratio of order of 10−4. This is much larger than the value inferred by the vector-
meson dominance, but agrees quite well with the tetraquark expectation for the
nature of this state. Further light-by-light scattering data in this region, obtained
during the ongoing Run-3 and future Run-4 of the LHC, are required to pin
down these states in γγ channel.

In 2020 the ATLAS Collaboration provided the most comprehensive dataset of the ob-
servation of light-by-light (LbL) scattering in the ultra-peripheral Pb-Pb collisions from the
LHC Run-2 [1]. The statistics has been increased compared to the first analyses [2, 3], and
the unfolded data were provided. The new results show a mild excess over the Standard
Model prediction centered on the diphoton invariant mass region of 5 to 10 GeV. In terms of
the total LbL cross section, the discrepancy between the experimental measurement and the
theoretical estimation reaches the value of around 2σ.

On the other hand, the LHCb Collaboration discovered a new state, X(6900), seen in the
di-J/ψ spectrum at around 6.9 GeV. This state has been confirmed very recently at ATLAS [4]
and CMS [5]. Apart from X(6900), these collaborations observed two other resonances in the
vicinity, namely X(6600) and X(7300). They all are candidates for fully-charmed tetraquarks,
predicted in many quark models, see, e.g. [6–24].

The quantum-number assignment for these stated is yet to be done; the most likely options
are: scalars (JPC = 0++), pseudoscalars (JPC = 0−+), axial vectors (JPC = 1−+), and tensors
(JPC = 2±+). In cases of even spin, the new X-resonances would couple to two photons and
hence contribute to the LbL scattering. From this point of view, the γγ → γγ channel can
be used as a filter for the resonances with even spin. Such resonances can in principle be
responsible for the aforementioned discrepancy between theory and experiment observed in
LbL scattering by the ATLAS Collaboration.

We have considered this scenario in the recent paper [25], by including the X(6900) con-
tribution to the LbL scattering, as shown in Fig 1. To this end, we extended the Monte-Carlo
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Abstract. The LHC newly-discovered resonant structures around 7 GeV, such
as the X(6900), could be responsible for the observed excess in light-by-light
scattering between 5 and 10 GeV. We show that the ATLAS data for light-by-
light scattering may indeed be explained by such a state with the γγ branching
ratio of order of 10−4. This is much larger than the value inferred by the vector-
meson dominance, but agrees quite well with the tetraquark expectation for the
nature of this state. Further light-by-light scattering data in this region, obtained
during the ongoing Run-3 and future Run-4 of the LHC, are required to pin
down these states in γγ channel.

In 2020 the ATLAS Collaboration provided the most comprehensive dataset of the ob-
servation of light-by-light (LbL) scattering in the ultra-peripheral Pb-Pb collisions from the
LHC Run-2 [1]. The statistics has been increased compared to the first analyses [2, 3], and
the unfolded data were provided. The new results show a mild excess over the Standard
Model prediction centered on the diphoton invariant mass region of 5 to 10 GeV. In terms of
the total LbL cross section, the discrepancy between the experimental measurement and the
theoretical estimation reaches the value of around 2σ.

On the other hand, the LHCb Collaboration discovered a new state, X(6900), seen in the
di-J/ψ spectrum at around 6.9 GeV. This state has been confirmed very recently at ATLAS [4]
and CMS [5]. Apart from X(6900), these collaborations observed two other resonances in the
vicinity, namely X(6600) and X(7300). They all are candidates for fully-charmed tetraquarks,
predicted in many quark models, see, e.g. [6–24].

The quantum-number assignment for these stated is yet to be done; the most likely options
are: scalars (JPC = 0++), pseudoscalars (JPC = 0−+), axial vectors (JPC = 1−+), and tensors
(JPC = 2±+). In cases of even spin, the new X-resonances would couple to two photons and
hence contribute to the LbL scattering. From this point of view, the γγ → γγ channel can
be used as a filter for the resonances with even spin. Such resonances can in principle be
responsible for the aforementioned discrepancy between theory and experiment observed in
LbL scattering by the ATLAS Collaboration.

We have considered this scenario in the recent paper [25], by including the X(6900) con-
tribution to the LbL scattering, as shown in Fig 1. To this end, we extended the Monte-Carlo
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Figure 5: Project LBL timeline

Based on the progress to be achieved in the first funding period, the prospects for the second
funding period are as follows:

• Interpretation of the new (Run-3) ATLAS data on LbL scattering

• Improved determination of the two-photon width of X(6900)

• Search for new resonances in LbL scattering

• Lattice QCD calculations of LbL amplitudes with inclusion of valence charm quarks, as well
as the complementary evaluation using dispersive sum rules

12 June 12, 2025
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Abstract: Lattice QCD calculations of the hadronic vacuum polarization (HVP) have
reached a precision where the electromagnetic (e.m.) correction can no longer be neglected.
This correction is both computationally challenging and hard to validate, as it leads to ul-
traviolet (UV) divergences and to sizeable infrared (IR) effects associated with the massless
photon. While we precisely determine the UV divergence using the operator-product ex-
pansion, we propose to introduce a separation scale Λ ∼ 400 MeV into the internal photon
propagator, whereby the calculation splits into a short-distance part, regulated in the UV
by the lattice and in the IR by the scale Λ, and a UV-finite long-distance part to be treated
with coordinate-space methods, thereby avoiding power-law finite-size effects altogether.
In order to predict the long-distance part, we express the UV-regulated e.m. correction
to the HVP via the forward hadronic light-by-light (HLbL) scattering amplitude and re-
late the latter via a dispersive sum rule to γ∗γ∗ fusion cross-sections. Having tested the
relation by reproducing the two-loop QED vacuum polarization (VP) from the tree-level
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• Electromagnetic correction to the vacuum polarization via the Cottingham-like 
formula involving the forward doubly-virtual light-by-light amplitude ℳ

Π4pt(q2, Λ) =
1
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The advantage in lattice calculations:
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ℳ(ν, K2, Q2) ≡ gμνgσρℳμνσρ(ν, K2, Q2) ν = k ⋅ q, k2 = − K2, q2 = − Q2, X = ν2 − K2Q2

photon propagator splitting: 1
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long-distance part short-distance part
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• regulated by the lattice• treated by coordinate-space methods



COTTINGHAM-LIKE FORMULA VERIFICATION IN QED

2×

✓Verified in QED; compared with lattice QCD w/o gluons

[Källén and Sabry, Dan. Mat. Pys. Medd. (1955)]
… many others

✓ The necessary counterterms, needed for renormalization, were quantified via OPE 
and confirmed  in perturbative calculation

Σ(m) ×
d

dm
≡QED:



✓Verified in scalar QED; used for phenomenological model for charged pion loop contribution

+ crossed

+ crossed

2×

2×4×

[Schwinger, “Particles, sources and fields” (1998)]
[Bijnens et al., PRD (2019)]

✓ Various important benchmark points were provided for the cross check with lattice

‣ Lattice results are reported in the publications of Julian Parrino and Dominik Erb.
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