

Run: 367321 Event: 755541675 2018-12-01 08:30:26

UNIVERSITÄT BONN

Precision Physics, Fundamental Interactions and Structure of Matter

Light-by-Light Scattering at the LHC

Workshop of RU FOR5327 - 12/06/2025

Kristof Schmieden, with many input from the LbyL analysis team

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

Ultra Peripheral Heavy Ion Collisions - LHC as photon collider

- Relativistic nuclei are intense source of (quasi-real) photons
- Equivalent photon flux scales with Z⁴
 - PbPb beams at LHC are a superb source of high energy photons!
- Maximum photons energy:
 - $E_{max} <= \gamma/R \sim 80 \text{ GeV}$
 - Lorentz factor γ up to 2700 @ LHC

[Fermi, Nuovo Cim. 2 (1925) 143]

Ultra Peripheral Heavy Ion Collisions - LHC as photon collider

- Relativistic nuclei are intense source of (quasi-real) photons
- Equivalent photon flux scales with Z⁴ • PbPb beams at LHC are a superb source of high energy photons!
- Maximum photons energy:
 - $E_{max} <= \gamma/R \sim 80 \text{ GeV}$
 - Lorentz factor γ up to 2700 @ LHC

[Fermi, Nuovo Cim. 2 (1925) 143]

- Various types of photon interactions possible
 - Photon-Pomeron: e.g. exclusive J/Psi production
 - Photons Gluon: photo production of jets
 - Photon Photon:
 - Producing fermion pairs (e.g. e+e-)
 - Light by Light scattering
 - QED interaction
 - Mediated via box-diagram
 - Beam particles stay intact

Overview of Light-by-Light scattering

Kristof Schmieden

- Cross section box-diagram
 - Broken down by particle type in loop
- Cross section of elementary process: ~10 pb

Brief history of $\gamma\gamma \rightarrow \gamma\gamma$ measurements @ LHC

Evidence

ATLAS: CMS:

2016: <u>Nature Physics 13 (2017) 852</u>

2019: Phys. Lett. B 797 (2019) 134826

Kristof Schmieden

UNIVERSITÄT BONN

Obervation

2019: Phys.Rev.Lett. 123 (2019)

Measurement

2020: <u>JHEP 03 (2021) 243</u>

2024: <u>Acc. in JHEP</u>

• PbPb collision

pp collision

• Light-by-Light scattering candidate event

Most Recent Results

- ATLAS: 2018 + 2015 Data: 2.2 nb⁻¹ of PbPb data analysed
 - 97 Events observed, Background: 27 ± 5

- CMS: 2018 Data: 1.7 nb⁻¹ of PbPb data analysed
 - 26 Events observed, Background: 12 ± 3

Kristof Schmieden

Most Recent Results

- ATLAS: 2018 + 2015 Data: 2.2 nb⁻¹ of PbPb data analysed
 - 97 Events observed, Background: 27 ± 5
 - Cross section:
 - 120 ± 17 (stat) ± 13 (sys) ± 4 (lumi) nb • Measured:
 - SuperChic3.0: 78 ± 8 nb
 - Ratio data / MC: 1.5

- CMS: 2018 Data: 1.7 nb⁻¹ of PbPb data analysed
 - 26 Events observed, Background: 12 ± 3
 - Cross section:
 - 107 ± 24 (stat) ± 13 (syst) nb • Measured:
 - 95.5 nb (NLO) • SuperChic 3.03
 - Ratio data / MC: 1.37

Kristof Schmieden

Most Recent Results

- ATLAS: 2018 + 2015 Data: 2.2 nb⁻¹ of PbPb data analysed
 - 97 Events observed, Background: 27 ± 5
 - Cross section:
 - Measured: $120 \pm 17 (stat) \pm 13 (sys) \pm 4 (lumi) nb$
 - SuperChic3.0: 78 ± 8 nb
 - Ratio data / MC: 1.5

Significantly different Acceptances! => Photon reconstruction, Trigger

- CMS: 2018 Data: 1.7 nb⁻¹ of PbPb data analysed
 - 26 Events observed, Background: 12 ± 3
 - Cross section:
 - Measured: 107 ± 24 (stat) ± 13 (syst) nb
 - SuperChic 3.03 95.5 nb (NLO)
 - Ratio data / MC: 1.37

Kristof Schmieden

• Trigger

- Exactly 2 photons with ATLAS: E_T > 2.5 GeV && |η| < 2.37, Excluding 1.37 < |η| < 1.5
 CMS: E_T > 2 GeV && |η| < 2.2
- Invariant di-photon mass $M_{\gamma\gamma} > 5 \text{ GeV}$
- Exclusivity requirements
 - No reconstructed tracks ($p_T > 100 \text{ MeV}$)
 - Similar for CMS
- Back-to-Back topology
 - $p_T(\gamma\gamma) < 1 \text{ GeV}$ (rejects cosmic muons)
 - Reduced acoplanarity < 0.01 (A_{ϕ} = 1- $|\Delta \phi| / \pi$)

Event Selection

UNIVERSITÄT BONN

$\eta\eta \rightarrow e^+e^- \rightarrow e\gamma e\gamma candidate event:$

• CMS: corrected di-photon Efficiency: 8.0 (1.1) %

- Photon reconstruction: 76.7 %
- Photon ID:
- Di-Photon Trigger:

50.0% 80%

• ATLAS:

- Photon reconstruction:
- Photon ID:
- Di-Photon Trigger:

63% - 92% 95%

50% - 100%

Efficiencies

Background processes How to measure the $\gamma\gamma \rightarrow \gamma\gamma$ process

- Two main background contributions:
 - Exclusive production of e+e- electron pairs
 - Both electrons misidentified as photons
 - Broader A_{ϕ} distribution compared to signal
 - Electrons bent in magnetic field

Background processes How to measure the $\gamma\gamma \rightarrow \gamma\gamma$ process

- Two main background contributions:
 - Exclusive production of e+e- electron pairs
- - Coloured initial state: significant intrinsic transverse momentum!
 - Broader shape of $A\phi$ distribution

Kristof Schmieden

- Other potential backgrounds found to be negligible:
 - $\gamma\gamma \rightarrow qq$
 - Exclusive di-meson production (pi0, eta, eta')
 Also charged mesons considered
 - Bottomonia: $\gamma \gamma \rightarrow \eta_b \rightarrow \gamma \gamma (\sigma \sim 1 \text{ pb})$
 - Fake photons: Cosmic rays, calorimeter noise

Unfolded fiducial cross section

- Measured data unfolded to remove detector effects
- Within fiducial volume
 - Slightly different for CMS and ATLAS!

Kristof Schmieden

2024: <u>Acc. in JHEP</u>

 $m_{vv} > 5 \text{ GeV}, p_{VT} < 1 \text{ GeV}, A_{VV} < 0.01$

Any new particles hiding there?

- New state in di- J/ψ mass distribution reported by LHCb => X(6900)
- Possibly lightest fully charmed tetraquark state
- State should couple to photons -> contribute to LyL scattering
- Included in SuperChic simulation and $\Gamma_{X \rightarrow \gamma \gamma}$ fitted to LbyL measurement data

Parameter	Interference	No-interference
$m_X [\text{MeV}]$	$6886 \pm 11 \pm 11$	$6905 \pm 11 \pm 7$
$\Gamma_{X \to J/\psi J/\psi}$ [MeV]	$168 \pm 33 \pm 69$	$80 \pm 19 \pm 33$
$\Gamma_{X \to \gamma \gamma} \text{ [keV]}$	67^{+15}_{-19}	45^{+11}_{-14}

dơ/dm_ਆ [nb/GeV] **10**F

> 80 60

20

Kristof Schmieden

Biloshytskyi, Pascalutsa, et. Al [Phys.Rev.D 106 (2022) 11, L111902, arXiv: 2207.13623]

What can one find in there? ALPs

- ALP signal simulated using Starlight MC
- SM background: LbyL + CEP + ee
 - Extracting limit on the coupling to ALPs $1/\Lambda_a$

Kristof Schmieden

UNIVERSITÄT BONN

Challenges (& Plans) for LHC run - 3

Lower E_T threshold:

=> Trigger

Very difficult to lower threshold: Noise blows up rate

Higher calorimeter noise level in run-3 decreases low-ET photon efficiency by factor 3 for $E_T < 3.5$ GeV

=> Reconstruction

Completely new reconstruction algorithm of low ET photon candidates is possible, anyone interested?

More statistics

=> LHC run-3 and beyond => higher efficiency

LHC run-3

Analysis of 1.7 nb⁻¹ data from 2023 ongoing

Conclusion

- PbPb collisions: spectacular laboratory to study light-by-light scattering
- Significant progress at the LHC
- Challenging channel for HEP detectors: very low E_T objects
- Test a variety of models against results

What to expect in the near future:

First LHC run-3 results with ~1.7 nb⁻¹

Tripple stats during run-3:

- Target integrated luminosity7 nb⁻¹
- Next PbPb running scheduled for Nov.
 25 and June 2026
- Improved trigger algorithms

Backup Slides

The LHC

UNIVERSITÄT BONN

• Bunch crossings every 25ns (40 MHz)

~60 simultaneous pp collision per

• Bunch crossings every 75ns (13 MHz)

 ~0.004 simultaneous PbPb collision • Essentially no pileup at all

 Only EM interaction in most bunch crossings! (UPC events)

• Used for photon physics

Interpretation - Search for New Physics

- Being interesting in it's own right, there's more to learn from this result:
 - Model independent interpretation using the effective field theory formalism (to be done)
 - Transformed into limits on specific models beyond the standard model
 - Two examples:

Interpretation - Search for New Physics

- Being interesting in it's own right, there's more to learn from this result:
 - Model independent interpretation using the effective field theory formalism (to be done)
 - Transformed into limits on specific models beyond the standard model
 - Two examples:

- Born Infeld theory
 - Nonlinear extension to QED
 - Imposing an upper limit of the EM field strength [Born and Infeld, Proc. R. Soc. A 144, 425 (1934)]
 - More recently: connection to string theory [Fradkin and Tseytlin, Infeld, Phys. Lett. 163B, 123 (1985)]

• Differential Light-by-Light scattering cross section can be turned into limit on mass scale appearing in B-I theory

PRL 118, 261802 (2017)

Reinterpretation of ATLAS 2016 result: Ellis et al, PRL 118, 261802 (2017)

Interpretation - Search for new Axion Like Particles:

- ALP signal simulated using Starlight MC
- SM background: LbyL + CEP + ee
 - Extracting limit on the coupling to ALPs $1/\Lambda_a$

Kristof Schmieden

- L1 requirements
 - Dedicated trigger for 2018 run (OR):
 - \geq 1 EM cluster with $E_T(\gamma) > 1$ GeV && 4 GeV < total $E_T < 200$ GeV
 - \geq 2 EM clusters with $E_T(\gamma) > 1$ GeV & total $E_T < 50$ GeV
- HLT Requirements (AND):
 - ΣE_T (FCal) < 3 GeV on both sides
 - \leq 15 hits in pixel detector
 - Tagging of exclusive photon final state

Kristof Schmieden

- L1 requirements
 - Dedicated trigger for 2018 run (OR):
 - \geq 1 EM cluster with $E_T(\gamma) > 1$ GeV && 4 GeV < total $E_T < 200$ GeV
 - \geq 2 EM clusters with $E_T(\gamma) > 1$ GeV & total $E_T < 50$ GeV
- HLT Requirements (AND):
 - ΣE_T (FCal) < 3 GeV on both sides
 - \leq 15 hits in pixel detector
 - Tagging of exclusive photon final state

Kristof Schmieden

Triggering

UNIVERSITÄT BONN

- Photon identification:
 - Uses neural net (Keras), trained for low E_T photons
 - Combination of EM calorimeter shower shape variables • Discrimination between photons, pions, electrons, noise

Kristof Schmieden

UNIVERSITÄT BONN

- Photon identification:
 - Uses neural net (Keras), trained for low E_T photons
 - Combination of EM calorimeter shower shape variables
 - Discrimination between photons, pions, electrons, noise

Kristof Schmieden

• Efficiency measurement:

 Using e+e- events where a hard bremsstrahlung photon was radiated

- $ee\gamma$ final state selection:
 - Exactly 1 electron $p_T > 4$ GeV && 1 additional track
 - Track $p_T < 1.5 \text{ GeV}$
 - Photon with $E_T > 2.5$ GeV must be present in Event!

How to measure the $\gamma\gamma \rightarrow \gamma\gamma$ process Background processes

- Exclusive production of e+e- electron pairs
 - Both electrons misidentified as photons
- Electrons bent in magnetic field
 - Broader A_{ϕ} distribution compared to signal
- Background rate estimated from data
 - 2 control regions:
 - Signal region + requiring 1 or 2 associated pixel tracks
 - Event yield from control regions extrapolated to signal region
 Needed: probability to miss pixel track if full track is not
 - reconstructed pemistag
 - p_{mistag} measured requiring 1 full track and exactly 2 signal photons: $(47 \pm 9)\%$

Background processes How to measure the $\gamma\gamma \rightarrow \gamma\gamma$ process

- Central Exclusive Production of 2 photons (**CEP**): $gg \rightarrow \gamma\gamma$
 - Coloured initial state: significant intrinsic transverse momentum!
 - Broader shape of A_{ϕ} distribution
 - Control region defined to study CEP: aco > 0.01
- Shape of A_{ϕ} distribution taken from simulation (SuperChic v3.0)
 - Uncertainty estimated using simulation without secondary particle emission (absorptive effects)
- Normalisation measured in control region
 - Dominating uncertainty form limited statistics (17%)
- Overall uncertainty of CEP background in signal region: 25%
- Expected events in signal region: 12 ± 3

UNIVERSITÄT BONI

Background processes How to measure the $\gamma\gamma \rightarrow \gamma\gamma$ process

- Central Exclusive Production of 2 photons (**CEP**): $gg \rightarrow \gamma\gamma$
 - Coloured initial state: significant intrinsic transverse momentum!
 - Broader shape of A_{ϕ} distribution
 - Control region defined to study CEP: aco > 0.01
- Shape of A_{ϕ} distribution taken from simulation (SuperChic v3.0)
 - Uncertainty estimated using simulation without secondary particle emission (absorptive effects)
- Normalisation measured in control region
 - Dominating uncertainty form limited statistics (17%)
- Overall uncertainty of CEP background in signal region: 25%
- Expected events in signal region: 12 ± 3

• Pb* dissociates, releasing neutrons detectable in the Zero Degree Calorimeter

- Cross check of ZDC information for events in CEP control region:
 - Good agreement with expectations :)

Kristof Schmieden

UNIVERSITÄT BONI

• ± 140m from ATLAS IP • 8.3 < $|\eta|$ < inf

Systematic Uncertainties

- Reco & PID SFs:
 - SFs derived in dependence of eta instead of p_T
 - Impact on measured C-factor taken as systematic unc.
 - 4% (Reco) 2% (PID)
- Photon energy scale & resolution
 - Taken from EGamma-group recommendations
 - 1% and 2% impact on MC yields, for scale & resolution
- Angular resolution (in phi)
 - Comparing electron tracks to cluster in yy->ee events
 - Additional single cluster smearing in MC: $\sigma_{\phi} \approx 0.006$
 - Impact on CEP background: **1%**
 - Impact on SFs: 2% (taken as systematic)

$$\sigma_{\phi^{\text{cluster}}} \approx \frac{(|\phi^{\text{cluster}1} - \phi^{\text{trk}1}| - |\phi^{\text{cluster}2} - \phi^{\text{trk}2}|)}{\sqrt{2}}$$

- Trigger
 - Three ee event selection criteria defined: loose, nominal
 - Difference between those taken as systematic unc.
 - Max. Uncertainty: +10% -4% @ E_T(cluster sum) 5 GeV
 - Overall: 5%

- Alternative LbyL signal sample
 - Starlight instead of SuperChic
 - 1% impact on C
 - Signal MC stats:
 - 1%

- Uncertainty on total background: 28%
- Uncertainty on detector correction factor C: 8%

	Source of uncertainty	Detector correction (C)
		0.263 ± 0.021
	Trigger efficiency	5%
	Photon reco. efficiency	4%
	Photon PID efficiency	2%
	Photon energy scale	1%
	Photon energy resolution	2%
	Photon angular resolution	2%
l, tight	Alternative signal MC	1%
	Signal MC statistics	1%
γ	Total	8%
		•

Differential distributions

- Measured distributions unfolded to particle level within fiducial region
 - $|\eta(\mathbf{y})| < 2.4 \& E_T(\mathbf{y}) > 2.5 \text{ GeV}$
- Baysian unfolding with 1 iteration used
 - Corrects for migration from particle-level to detector level
 - Detector resolution
 - Reconstruction efficiencies
- Results compared to Prediction from Superchic 3.0
- Large statistical uncertainties
 - Everything compatible with SM

