Project TFF — Experiment

Workshop of Research Unit FOR5327

Christoph Florian Redmer

2025-06-11

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

Transition Form Factors

C.F. Redmer - Project TFF

- Coupling of photons to electrically neutral hadrons
- Scalar function of two virtualities $\mathcal{F}_M(q_1^2, q_2^2)$
- Normalized to radiative width of mesons
- Related to meson distribution amplitudes

$$\Gamma_{M \to \gamma \gamma} = \frac{\pi \alpha^2 m_M^3}{4} |\mathcal{F}_M(0,0)|^2$$
$$\mathcal{F}_{\pi^0}(-Q_1^2, -Q_2^2) = \frac{2f_\pi}{6} \int_0^1 \phi(x) T_H(x, Q_1^2, Q_2^2) \mathrm{d}x$$

Transition Form Factors

- Coupling of photons to electrically neutral hadrons
- Scalar function of two virtualities $\mathcal{F}_M(q_1^2, q_2^2)$
- Normalized to radiative width of mesons
- Related to meson distribution amplitudes
- Test of pQCD: Brodsky-Lepage limit

2025-06-11

$$\Gamma_{M \to \gamma \gamma} = \frac{\pi \alpha^2 m_M^3}{4} |\mathcal{F}_M(0,0)|^2$$
$$\mathcal{F}_{\pi^0}(-Q_1^2, -Q_2^2) = \frac{2f_\pi}{6} \int_0^1 \phi(x) T_H(x, Q_1^2, Q_2^2) \mathrm{d}x$$

Μ

 $\sim \gamma_1^{(*)}$

F_M

Transition Form Factors

- Coupling of photons to electrically neutral hadrons
- $\mathcal{F}_{M}(q_{1}^{2}, q_{2}^{2})$ Scalar function of two virtualities
- Normalized to radiative width of mesons
- Related to meson distribution amplitudes
- Test of pQCD: Brodsky-Lepage limit
- Input and benchmark for phenomenology

2025-06-11

Μ

F_M

Experimental Access to TFF

Exploit synergies of facilities

- Quasi-continuous electron beam at MAMI
- Tagged bremsstrahlung photon beam ($E_{max} \approx 1.6 \text{ GeV}$)
- Non-magnetic spectrometer CB/TAPS

2025-06-11

- e⁺e⁻ collider
 1.84 ≤ \sqrt{s} [GeV] ≤ 5.0
 Design luminosity exceeded > 1 $\frac{1}{nb \cdot s}$
- Multi-purpose spectrometer
- Recent upgrade of inner tracker

Exploit synergies of facilities

Tagged bremsstrahlung photon beam ($E_{max} \approx 1.6 \text{ GeV}$)

Non-magnetic spectrometer CB/TAPS

- Multi-purpose spectrometer
- Recent upgrade of inner tracker

C.F. Redmer - Project TFF

RU Objectives

<u>TFF-1</u>: Measurement of space-like and time-like π^0 TFF

- World-leading time-like π^0 TFF measurement at A2/MAMI
- Preparation for high-statistics measurement of $\omega \pi^0 \text{TFF}$
- Measurement of space-like π^0 TFF at low Q² at BESIII
- Preparation for a double-virtual measurement

<u>TFF-2</u>: $\gamma\gamma$ fusion to multi-meson final states

- First measurement of space-like TFF of $\pi^0\pi^0$ and $\pi^0\eta$ at BESIII
- Analysis of axial-vector meson TFFs in $\pi^+\pi^-\eta$ at BESIII

Pion TFF from Dalitz decays

- Additional data taken in 2018
 - Goal: 5.5 times increased statistics
- Analysis: $\gamma p \rightarrow e^+ e^- \gamma p$

- Select events with three and four clusters
 - γ/e^{\pm} cluster only in calorimeter
- Kinematic fit $\gamma p \rightarrow 3\gamma p$
- Identify e/p with hits on PID detector
- Require hits in separate elements to suppress conversion
- Subtract random and empty target background contributions

- Additional data taken in 2018
 - Goal: 5.5 times increased statistics
- Analysis: $\gamma p \rightarrow e^+ e^- \gamma p$
 - Select events with three and four clusters
 γ/*e*[±] cluster only in calorimeter
 - Kinematic fit $\gamma p \rightarrow 3\gamma p$
 - Identify e/p with hits on PID detector
 - Require hits in separate elements to suppress conversion
 - Subtract random and empty target background contributions
- 2.3 M events selected

2025-06-11

Goal achieved !!

- Additional data taken in 2018
 - Goal: 5.5 times increased statistics
- Analysis: $\gamma p \rightarrow e^+ e^- \gamma p$
 - Select events with three and four clusters
 γ/*e*[±] cluster only in calorimeter
 - Kinematic fit $\gamma p \rightarrow 3\gamma p$
 - Identify e/p with hits on PID detector
 - Require hits in separate elements to suppress conversion
 - Subtract random and empty target background contributions
- 2.3 M events selected

2025-06-11

Bin-wise background subtraction using MC distributions

C.F. Redmer - Project TFF

- Additional data taken in 2018
 - Goal: 5.5 times increased statistics
- Analysis: $\gamma p \rightarrow e^+ e^- \gamma p$
 - Select events with three and four clusters
 γ/*e*[±] cluster only in calorimeter
 - Kinematic fit $\gamma p \rightarrow 3\gamma p$
 - Identify e/p with hits on PID detector
 - Require hits in separate elements to suppress conversion
 - Subtract random and empty target background contributions
- 2.3 M events selected

2025-06-11

Bin-wise background subtraction using MC distributions

C.F. Redmer - Project TFF

Space-like TFF at BESIII

 $\mathcal{F}(\mathsf{Q}_1^2,\mathsf{Q}_2^2) \to \mathcal{F}(\mathsf{Q}^2)$

Two-photon collision events:

Single-tag measurements

2025-06-11

- Require one quasi-real photon
- Select
 - One scattered lepton & meson decay products
 - Require small scattering angle of missing momentum

Space-like TFF at BESIII

 $\mathcal{F}(\mathsf{Q}_1^2,\mathsf{Q}_2^2) \to \mathcal{F}(\mathsf{Q}^2)$

Two-photon collision events:

Single-tag measurements

- Require one quasi-real photon
- Select
 - One scattered lepton & meson decay products
 - Require small scattering angle of missing momentum
- Reduce background by adequate conditions
- Subtract background in bins of Q²

$\mathcal{F}(\mathsf{Q}_1^2,\mathsf{Q}_2^2) \to \mathcal{F}(\mathsf{Q}^2)$ Require one guasi-real photon

Space-like TFF at BESIII

- Select
 - One scattered lepton & meson decay products
 - Require small scattering angle of missing momentum
- Reduce background by adequate conditions
- Subtract background in bins of Q²
- Divide by point-like cross section
- Correct for radiative effects

2025-06-11

Two-photon collision events:

Single-tag measurements

Here: based on 2.9 fb⁻¹ taken at 3.773 GeV

$\mathcal{F}(\mathsf{Q}_1^2,\mathsf{Q}_2^2) o \mathcal{F}(\mathsf{Q}^2)$

Space-like TFF at BESIII

Two-photon collision events:

Single-tag measurements

- Select
 - One scattered lepton & meson decay products
 - Require small scattering angle of missing momentum
- Reduce background by adequate conditions
- Subtract background in bins of Q²
- Divide by point-like cross section
- Correct for radiative effects

2025-06-11

Here: based on 2.9 fb⁻¹ taken at 3.773 GeV

Access smaller momentum transfer

First π^0 TFF analysis finalized

Systematic effects reduced

2025-06-11

- Radiative corrections included
- Larger momentum transfer range accessible

 $0.3\,{\rm GeV}^2 \rightarrow 0.2\,{\rm GeV}^2$

Access smaller momentum transfer

First π^0 TFF analysis finalized

Systematic effects reduced

2025-06-11

- Radiative corrections included
- Larger momentum transfer range accessible $0.3 \,\mathrm{GeV}^2 \rightarrow 0.2 \,\mathrm{GeV}^2$

In the meantime: Measurements of η and η' TFFs started!

Access smaller momentum transfer

First π^0 TFF analysis finalized

- Systematic effects reduced
- Radiative corrections included
- Larger momentum transfer range accessible $0.3 \,\mathrm{GeV}^2 \rightarrow 0.2 \,\mathrm{GeV}^2$

In the meantime: Measurements of η and η' TFFs started!

- Reconstruction efficiency improves with lower \sqrt{s}
 - Tests at 2.125 GeV

- Q² range can be extended to 0.1 GeV²
- Small integrated luminosities available (~100 pb⁻¹)

Data available at BESIII

C.F. Redmer - Project TFF

- Original plan: $\mathcal{F}_{\pi}(Q_1^2, Q_2^2)$
 - Dominating background contributions from Bhabha scattering
 - Reliability of MC limited for hard radiation Bhabha
- Alternative: $\mathcal{F}_{\eta,\eta'}(Q_1^2,Q_2^2)$ with charged decays modes
 - Better resolution
 - Better background situation
 - BaBar published successful measurement

Study decay modes: $\eta \to \pi^+ \pi^- \pi^0$

2025-06-11

$$\eta' \to \pi^+ \pi^- \eta$$

 $\eta' \to \pi^+ \pi^- \gamma$

Phys.Rev. D98 (2018) 112002

B.Sc. Thesis of Maurice Anderson

Example: $\eta' \rightarrow \pi^+ \pi^- \eta$

- Combine 13.5 fb⁻¹ at energies \geq 3.773 GeV
- Select 3 tracks and at least 2 photons
- 4C/5C kinematic fit
- Reject background from

2025-06-11

- Charmonium transitions
- Timelike two-photon production

Example: $\eta' \to \pi^+ \pi^- \eta$

- Combine 13.5 fb⁻¹ at energies \geq 3.773 GeV
- Select 3 tracks and at least 2 photons
- 4C/5C kinematic fit
- Reject background from

2025-06-11

- Charmonium transitions
- Timelike two-photon production

28.4 ± 5.5 signal events identified!

Potential for double-tagged $f_1(1285)$?

Analysis being repeated on full 20 fb⁻¹ data set at 3.773 GeV !

C.F. Redmer - Project TFF

More degrees of freedom make analysis more involved

Assuming unpolarized lepton beams:

2025-06-11

 $d\sigma_{ee} = \frac{\alpha^2}{16\pi^4 q_1^2 q_2^2} \sqrt{\frac{(q_1 \cdot q_2)^2 - q_1^2 q_2^2}{(p_1 \cdot p_2)^2 - m_e^4}} \left[4\rho_1^{++} \rho_2^{++} \sigma_{TT} + 2|\rho_1^{+-} \rho_2^{+-}| \tau_{TT} \cos 2\tilde{\phi} + 2\rho_1^{++} \rho_2^{00} \sigma_{TL} + 2\rho_1^{00} \rho_2^{++} \sigma_{LT} + \rho_1^{00} \rho_2^{00} \sigma_{LL} - 8|\rho_1^{+0} \rho_2^{+0}| \tau_{TL} \cos \tilde{\phi} \right] \frac{d^3 p_1' d^3 p_1'}{E_1' E_2'}$

 $p_i, p'_i, q_i = (p_i - p'_i)$ Momenta of incoming and outgoing leptons and photons

 $\sigma_{TT}, \sigma_{TL}, \sigma_{LT}, \sigma_{LL}$ Two-photon cross sections for Transversely and Longitudinally polarized photons

 au_{TT}, au_{TL} Two-photon cross sections correlation terms

$$\rho_i^{ab}$$
 Elements of photon density matrix for helicities a,b=+,-,0; functions of q_i

Angle between planes of incoming and outgoing leptons in two-photon c.m.s

 $\tilde{\phi}$

Previously momentum dependent information on $\gamma^{(*)}\gamma^{(*)} \rightarrow \pi\pi$ scarce

- Preliminary work: $\pi^+\pi^-$
 - Originally combined 7fb⁻¹ of data, now moving to new 3.773 GeV data
 - Single-tag analysis

2025-06-11

Background from pion and muon production

Previously momentum dependent information on $\gamma^{(*)}\gamma^{(*)} \rightarrow \pi\pi$ scarce

- Preliminary work: $\pi^+\pi^-$
 - Originally combined 7fb⁻¹ of data, now moving to new 3.773 GeV data
 - Single-tag analysis

2025-06-11

- Background from pion and muon production
 - Use machine-learning to separate muon and pion signals
 - Subtract remaining contributions using precise/tuned MC

Previously momentum dependent information on $\gamma^{(*)}\gamma^{(*)} \rightarrow \pi\pi$ scarce

- Preliminary work: $\pi^+\pi^-$
 - Originally combined 7fb⁻¹ of data, now moving to new 3.773 GeV data
 - Single-tag analysis

2025-06-11

- Use machine-learning to separate muon and pion signals
- Subtract remaining contributions using precise/tuned MC

Analysis of neutral system: $\pi^0\pi^0$

2025-06-11

- Using full new 20 fb⁻¹ data set
- New approach for single-tag analysis: Kinematic fit with missing track
 - Better resolution of missing Q²
- Only conditions on χ^2_{KF} and $Q^2_{\rm miss}$

Max Lellmann

C.F. Redmer - Project TFF

Analysis of neutral system: $\pi^0\pi^0$

- Using full new 20 fb⁻¹ data set
- New approach for single-tag analysis: Kinematic fit with missing track
 - Better resolution of missing Q²
- Only conditions on χ^2_{KF} and $Q^2_{
 m miss}$

Analysis of neutral system: $\pi^0 \pi^0$

- Using full new 20 fb⁻¹ data set
- New approach for single-tag analysis: Kinematic fit with missing track
 - Better resolution of missing Q²
- Only conditions on χ^2_{KF} and $Q^2_{
 m miss}$

Luminosity function needed to determine relevant cross sections

$$d\sigma_{ee} = \frac{\alpha^2}{16\pi^4 q_1^2 q_2^2} \sqrt{\frac{(q_1 \cdot q_2)^2 - q_1^2 q_2^2}{(p_1 \cdot p_2)^2 - m_e^4}} \left[4\rho_1^{++} \rho_2^{++} \sigma_{TT} + 2\rho_1^{++} \rho_2^{00} \sigma_{TL} + 2\rho_1^{00} \rho_2^{++} \sigma_{LT} \right] \frac{d^3 p_1' d^3 p_1'}{E_1' E_2'}$$

 $\frac{d^2\sigma_{ee}}{dQ^2dW} = \frac{d\mathcal{L}_{\gamma\gamma}}{dQ^2dW} \left(\sigma_{TT}(Q^2, 0, W) + \varepsilon\sigma_{TL}(Q^2, 0, W)\right)$

Using: Phys. Rept. 15 (1975) 181 Nucl.Phys. B54 (1973) 573

Analytic evaluation by Yuping

2025-06-11

Model dependent assumptions for finite 2nd virtuality necessary

Max preferred to do it numerically:

2025-06-11

Combine cross section equation with phase space generation algorithm by Schuler et al.

Agreement with analytic determination for all

- Energies
- Ranges of Q²
- Hadronic masses

Extend it to be an event generator for Hadron production in Two-Photon Scattering

Allow for any number of particles

- Assume flat phase space distribution
- Need input for two-photon cross sections

Extend it to be an event generator for Hadron production in Two-Photon Scattering

Allow for any number of particles

2025-06-11

- Assume flat phase space distribution
- Need input for two-photon cross sections
 - $\gamma \gamma \rightarrow \pi^+ \pi^- / \pi^0 \pi^0$ from dispersive analysis (Danilkin, Vanderhaeghen)
 - $\gamma\gamma \rightarrow \pi^0\eta$ from dispersive analysis (Danilkin, Deneika, Vanderhaeghen)
 - $\gamma\gamma \rightarrow \pi^+\pi^-\eta$ from phenomenology (Ren, Danilkin, Vanderhaeghen)
 - Experimental results from Belle and BESIII on $K\bar{K},\eta\eta$

Additional degree of freedom for two-body final states

- Formalism previously established for $e^+e^- \rightarrow e^+e^- X$
- Extended in collaboration with Marc Vanderhaeghen

New event generator: HadroTOPS

C.F. Redmer - Project TFF

- Essential, since development of established generator (Ekhara) came to an end
- Publication in preparation

Analysis of $\gamma\gamma^* \to \pi^0\eta$

• Analogous procedure to $\pi^0\pi^0$ analysis

 $\gamma\gamma^* o f_1(1285) o \pi^+\pi^-\eta$

- Axial-vector mesons can be produced due to virtuality of tagged lepton
 - Otherwise forbidden due to Landau-Yang theorem
- Only experimental information on Q² dependence of TFF from L3
 - Q² dependence inferred from MC
 - Effective TFF model fitted to data
 - Data published as lepton-based cross section at 91 GeV

At BESIII

Accessible in single-tagged analysis

2025-06-11

Confirmed by absence of signal in untagged measurement

Phys.Lett. B526 (2002) 269

$\gamma\gamma^* ightarrow f_1(1285) ightarrow \pi^+\pi^-\eta$

2025-06-11

- Single-tag analysis of full 20 fb⁻¹ data set
 - 2C kinematic fit (missing electron & fixed eta mass)
 - Conditions on missing Q² and sideband in χ^2_{2C}
- Previously event generator from BaBar used

$\gamma\gamma^* ightarrow f_1(1285) ightarrow \pi^+\pi^-\eta$

2025-06-11

- Single-tag analysis of full 20 fb⁻¹ data set
 - 2C kinematic fit (missing electron & fixed eta mass)
 - Conditions on missing Q² and sideband in χ^2_{2C}
- Previously event generator from BaBar used
 - Not able to describe intermediate masses

$\gamma\gamma^* ightarrow f_1(1285) ightarrow \pi^+\pi^-\eta$

- Single-tag analysis of full 20 fb⁻¹ data set
 - 2C kinematic fit (missing electron & fixed eta mass)
 - Conditions on missing Q² and sideband in χ^2_{2C}
- Previously event generator from BaBar used
 - Not able to describe intermediate masses
- Perform PWA

- Use amplitude developed in work of Ren, Danilkin, Vanderhaeghen
- Use HadroTOPS for two-photon phase space description
- Use AmpTools to fit experimental distributions (masses and widths of $f_1 \& a_1$, and TFFs as free parameters)

- $\gamma\gamma^*
 ightarrow f_1(1285)
 ightarrow \pi^+\pi^-\eta$
 - Single-tag analysis of full 20 fb⁻¹ data set
- Perform PWA
 - Use amplitude developed in work of Ren, Danilkin, Vanderhaeghen
 - Use HadroTOPS for two-photon phase space description
 - Use AmpTools to fit experimental distributions (masses and widths of $f_1 \& a_1$, and TFFs as free parameters) $m(\eta \pi^{\pm})$ $m(\pi^+\pi)$

- $\gamma\gamma^*
 ightarrow f_1(1285)
 ightarrow \pi^+\pi^-\eta$
- Single-tag analysis of full 20 fb⁻¹ data set
- Perform PWA

2025-06-11

Fit pion helicity angle to separate two-photon cross section contributions

Summary

TFF-1

- New π^0 TFF analysis from Dalitz decays at A2/MAMI, world leading statistics
- Space-like π^0 TFF at reduced Q²
- Exploratory double-tagged TFF measurements of $\,\eta,\eta'$

TFF-2:

- Single-tag measurements $\pi\pi$, $\pi^0\eta$ close to finalization
- New event generator developed

2025-06-11

Single-tag measurement with PWA of $f_1(1285)$ decay to determine axial-vector meson TFFs