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What will | talk about

QUANTUM METROLOGY

*Entanglement-based theory

*Squeezing-based theory
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Note: entanglement at the measurement
stage is useless!
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We will be using generalized measurements (POVMs) where a 'sensible’ Hermitian operator cannot always be
connected to a measurement procedure..
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< 4s TIheusual (Heisenberg-Robertson) uncertainties require operators

;

We need to connect an operator and a parameter (e.g. energy-time,
number-phase, etc.)

We will be using generalized measurements (POVMs) where a 'sensible’ Hermitian operator cannot always be
connected to a measurement procedure..

How *to evaluate the goodness of the
estimation? @ (RMS or standard deviation)
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~lower bound: generalized uncertainties

e 2 From the Cramer-Rao bound, it is possible to show that

\ [Ann. Phys. 247, 135
(1996)]

if £ comes from a unitary (i.e. Q(go) = U¢QOU; ) generated by )

1
2
:? A’ ©w A%h = = v = number of measurements

/

generalized UR!!

If it's not unitary, then the formula is more complicated, but same

ideal
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measure the phase in an interferometer by inserting N
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port C and D

P, = (Wil W) P = 71001+ (11(10) + ¥ = cos’(p/2)
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*Our framework makes it easy to invent NEW PROTOCOLS!
e.g. it is now immediate to see that, by entangling N particles in position, we gete V IV

increase in the accuracy of measuring momentum and viceversa!

in general:

4 )

1) entangle [V probes on the basis of eigenstates of H
2) let the probes interact with the system;

3) measure on a dual basis.

N

[Resul’r: a VN precision enhancement. j
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NATURE Vel 440|30 March 2006 NEWS & VIEWS
QUANTUM METROLOGY be optimal because it achieves the bound,
° ° r ° known as the Cramér-Rao lower bound’,

that expresses the best accuracy that can be
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Advances in quantum metrology

Vittorio Giovannetti'*, Seth Lloyd? and Lorenzo Maccone?®

The statistical error in any estimation can be reduced by repeating the measurement and averaging the results. The central
limit theorem implies that the reduction is proportional to the square root of the number of repetitions. Quantum metrology
is the use of quantum techniques such as entanglement to yield higher statistical precision than purely classical approaches.
In this Review, we analyse some of the most promising recent developments of this research field and point out some of
the new experiments. We then look at one of the major new trends of the field: analyses of the effects of noise and experi-
mental imperfections.



So... Why entanglement?

‘BECAUSE

00) +
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l.e. entanglement turns a parallel strategy into a
sequential one.




Infinite dimensional systems

-
Up to now — finite dimensional systems

(for NOON state interferometry, we were in the N-photon
subspace of the radiation Hilbert space)
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Obvious: infinite resources
give infinite precision!!!
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... but infinite resources are irrealistic: we
need to introduce some constraints
(e.g. on the average energy)

what happens then?



What happens then?

a generalization
of Heisenberg-type
uncertainty relations

Work in collaboration with

Vittorio Giovannetti and Seth Lloyd

PRL 108, 260405 (2012)

PRL 108, 210404 (2012)



Heisenberg uncertainty relation

“If you have a probe system with spread Ap in momentum, youcan ~ =~~~
discover its position with uncertainty Ax” -
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Heisenberg uncertainty relation

“If you have a probe system with spread Ap in momentum, youcan ~ =~~~
discover its position with uncertainty Ax” -

0 1 -
AX > = * "n
20p AH .l

H is the generator of translations of X:
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AX >
ANH

precision bounded by the variance A*H (second moment) of
the generator H
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New bound [ K A
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VUH
g J
H = <H> — EQ /< constant O(1)

ground state (minimum eigenvalue of H)

precision bounded by the expectation value <H > (first
moment) of the generator H



Heisenberg bound for interferometry

For interferometry:

The Heisenberg bound for interferom
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Main results

*Heisenberg bound for squeezin

*Quadratic enhancement in precision
in terms of the number of non-
squeezed probes one could create
with the squeezed probe's energy.
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Main idea

* Take the energy used by N coherent
(classical) probes

*Use It to squeeze one probe 1 .
*A quadratic enhancement!! /%
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What did | say?

1. Quantum metrology parallel, sequential
strategies

2. Role of entanglement
3. infinite dimensions: different bounds

4. Squeezing
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