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About the
Astroparticle
Physics Lab 
experimental physics lab specializing in
particle detection physics 

Dark Matter Search
Space Study
Cultural Heritage 
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where we are located
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Dark Matter
Search
Using
Haloscopes 

1st Candidate

Dark Photon - MuDHI EXperiment 

2nd Candidate 

Axions - project under development 
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DP
SM 

photon

MuDHI Experiment 
Target

“dark photon”
a theorized particle

belonging to the "dark
sector" - neutral under

Standard Model (SM)
interactions 

Principle

kinetic mixing (vector
portal)  between a dark

boson & ordinary boson 

Detector

dielectric haloscope 

 dielectric layers for
conversion 
photosensor for
detecting converted
photons 
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MuDHI Experiment 
Haloscope components: 

Stack 
Single-Photon sensor 
Lens
Mirror 
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Adapted from Baryakhtar et al. (2018)



MuDHI Experiment 
Haloscope components: 

23 dielectric layers of Si N  & SiO3 4 2

SPAD operated in Geiger mode, peak quantum
efficiency at 810 nm → m  ~ 1.5 eV/c  DP

2

aspherical converging lens 
mirror 
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MuDHI Experiment 
Operation Phases

Off Measurement 
recording counts without the dielectric stack 
assumes no DP signal present - measurement of background noise 
lasted 30 minutes 

On Measurement 
recording counts with stack in place 
search for potential DP signal 
lasted 2 hours 
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final observed count rates 
On measurement (with stack): n  = 98.6 Hz ± 2.6 Hzon

Off measurement (without stack): n  = 96.5 Hz ± 2.3 Hz off

           The observed count rates (n  and n ) are consistent with no signal observedon off

MuDHI Experiment 
Results
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MuDHI Experiment 
Results

exclusion limits 
max. log likelihood: set exclusion
limits at 90% confidence level (CL)
on the kinetic mixing coupling
constant between dark photons and
ordinary photons
min. kinetic mixing parameter of
6.86 × 10⁻¹¹ @ m  of 1.61 eV/c²DP
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Adapted from Manenti et al. (2021)



MuDHI Experiment 
Results

Published in:
L. Manenti et al., "Search for dark photons
using a multilayer dielectric haloscope
equipped with a single-photon avalanche
diode", Phys. Rev. D 105, 052010 (2022)

arXiv:2110.10497, DOI:
10.1103/PhysRevD.105.052010
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https://arxiv.org/abs/2110.10497


axion
SM 

photon

Axion Haloscope
Target

“axion”
a non-relativistic dark

matter particle candidate

Principle

coherent axion field → EM
waves directly at the
surfaces of dielectric

disks

Detector

dielectric haloscope 

 dielectric layers  +
static magnetic field
for conversion 
photosensor for
detecting converted
photons 
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Haloscope components: 

25 dielectric layers of Si N  & SiO3 4 2

SPAD 
converging lens 
Mirror 
set-up prepared for Nuclear Magnetic Resonance (NMR) machine in NYUAD  ~ 14 T 

Axion Haloscope
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Axion-photon coupling
limits vs. axion mass 

Axion Haloscope

Adapted from O’Hare (2020–present)



Gravitational
Waves 
a new target for haloscopes 
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Adapted from LIGO Scientific Collaboration (2025)



GW EM field 

GW Detection
Target

“gravitational wave”
ripples in spacetime 

relativistic nature

Principle

Gertsenshtein effect:
incoming gravitational

wave in the presence of a
magnetic field sources an

effective current

Detector

dielectric haloscope 

 dielectric layers  +
static magnetic field
for conversion 
photosensor for
detecting converted
photons 
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Main Differences

GW → photon conversion also occurs in vacuum
sourced EM waves inherit:

GW phase (position dependent)
GW propagation direction 

GW Detection
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Main Alterations

operation in multiple modes (vacuum or dielectric stack) 
requirements 

resonant operation: new requirement on effective disk thickness +
limited number of disks 
relaxed requirement on disk surface smoothness

GW Detection
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Options with Axion Haloscope

operation in GW resonant mode (with stack) → target specific frequency 
operation in GW broadband mode (without stack) → target frequency range 
next step: hybrid mode 

GW Detection



for the same axion haloscope setup ~ m  1-1.5 eV target: a

         GW frequency ~250-360 THz

possible sources in this f range
GW spectrum of the sun 
primordial black holes

mergers 
evaporating
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GW Target 

GW Detection
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Options with Axion Haloscope

still in research phase
estimation of sensitivity - looked into 

microwave cavity model (ADMX like) 

GW Detection
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Options with Axion Haloscope

still in research phase
estimation of sensitivity - looked into 

microwave cavity model (ADMX like) 

GW Detection

h  ~ 10  : far from observation 0
-21 Adapted from Franciolini et al. (2022)
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Options with Axion Haloscope

still in research phase
estimation of sensitivity - looked into 

microwave cavity model (ADMX like) 
dielectric haloscopes (MADMAX like) 

GW Detection

Adapted from Franciolini et al. (2022)
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Options with Axion Haloscope

still in research phase
estimation of sensitivity - looked into 

microwave cavity model (ADMX like) 
dielectric haloscopes (MADMAX like) 

GW Detection

h  ~ 10  : unrealistically good! 0
-26 Adapted from Franciolini et al. (2022)
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Options with Axion Haloscope

higher frequency = weaker signal 
main challenge is reaching high sensitivities

GW Detection

Adapted from Aggarwal et al. (2025)



Thank you!
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