

ASTROPARTICLE PHYSICS LAB

Dielectric Haloscope

Astroparticle Physics Lab PI: Prof. Francesco Arneodo

Alia Zino

Overview

About the Lab

Dark Matter Search

- Dark Photon
- Axion

Gravitational Wave Search

About the Astroparticle Physics Lab

experimental physics lab specializing in particle detection physics

- Dark Matter Search
- Space Study
- Cultural Heritage

About the Astroparticle Physics Lab

where we are located

About the Astroparticle Physics Lab

where we are located

Dark Matter Search Using Haloscopes

1st Candidate

Dark Photon - MuDHI EXperiment

2nd Candidate

Axions - project under development

MuDHI Experiment

Target

"dark photon"

a theorized particle belonging to the "dark sector" - neutral under Standard Model (SM) interactions Principle

kinetic mixing (vector portal) between a dark boson & ordinary boson

Detector

dielectric haloscope

- dielectric layers for conversion
- photosensor for detecting converted photons

MuDHI Experiment

Haloscope components:

- Stack
- Single-Photon sensor
- Lens
- Mirror

07

Adapted from Baryakhtar et al. (2018)

Haloscope components:

- 23 dielectric layers of $Si_3N_4 \& SiO_2$
- SPAD operated in Geiger mode, peak quantum efficiency at 810 nm \rightarrow m_{DP} ~ 1.5 eV/c²
- aspherical converging lens
- mirror

Operation Phases

- Off Measurement
 - recording counts without the dielectric stack
 - assumes no DP signal present measurement of background noise
 - lasted 30 minutes
- On Measurement
 - recording counts with stack in place
 - search for potential DP signal
 - lasted 2 hours

Results

final observed count rates

- \circ On measurement (with stack): $n_{on} = 98.6 \text{ Hz} \pm 2.6 \text{ Hz}$
- Off measurement (without stack): $n_{off} = 96.5 \text{ Hz} \pm 2.3 \text{ Hz}$

The observed count rates (n_{on} and n_{off}) are consistent with **no signal observed**

Poculto	10
NESUILS	10
 exclusion limits 	10
 max. log likelihood: set exclusion 	$\gtrsim 10^{-10}$
limits at 90% confidence level (CL)	10
on the kinetic mixing coupling	10
constant between dark photons and	10
ordinary photons	10
 min. kinetic mixing parameter of 	
6.86 × 10⁻¹¹ @ m_{DP} of 1.61 eV/c²	

Adapted from Manenti et al. (2021)

Results

Published in: L. Manenti et al., "Search for dark photons using a multilayer dielectric haloscope equipped with a single-photon avalanche diode", Phys. Rev. D 105, 052010 (2022)

• arXiv:2110.10497, DOI: 10.1103/PhysRevD.105.052010

Gran Sasso Science Institute (GSSI), Via Iacobucci 2, I-67100 L'Aquila, Italy Istituto Nazionale di Fisica Nucleare (INFN) - Laboratori Nazionali del Gran Sasso, I-67100 Assergi, L'Aquila, Italy and Center for Astro. Particle and Planetary Physics (CAP^3) . New York University Abu Dhabi, United Arab Emirates

The Oskar Klein Centre, Department of Physics, Stockholm University, AlbaNova, SE-10691 Stockholm, Sweden and Nordita, KTH Royal Institute of Technology and Stockholm University, Roslagstullsbacken 23, 10691 Stockholm, Sweden

We report on the results of the search for dark photons with mass around $1.5 \,\mathrm{eV/c^2}$ using a multilayer dielectric haloscope equipped with an affordable and commercially available photosensor. The multilayer stack, which enables the conversion of dark photons (DP) to Standard Model photons, is made of 23 bilayers of alternating SiO_2 and Si_3N_4 thin films with linearly increasing thicknesses through the stack (a configuration known as a "chirped stack"). The thicknesses have been chosen according to an optimisation algorithm in order to maximise the DP-photon conversion in the energy region where the photosensor sensitivity peaks. This prototype experiment, baptised MuDHI (Multilayer Dielectric Haloscope Investigation) by the authors of this paper, has been designed, developed and run at the Astroparticle Laboratory of New York University Abu Dhabi, which marks the first time a dark matter experiment has been operated in the Middle East.

NORDITA-2021-087

Search for dark photons using a multilayer dielectric haloscope equipped with a single-photon avalanche diode

Laura Manenti,* Umang Mishra, Gianmarco Bruno, Henry Roberts, Panos Oikonomou, Renu Pasricha, Isaac Sarnoff, James Weston, and Francesco Arneodo Division of Science, New York University Abu Dhabi, United Arab Emirates and Center for Astro, Particle and Planetary Physics (CAP^3) , New York University Abu Dhabi, United Arab Emirates

Adriano Di Giovanni

Alexander John Millar

Knut Dundas Morå

Physics Department, Columbia University, New York, New York 10027, USA (Dated: January 10, 2023)

No significant signal excess is observed, and the method of maximum log-likelihood is used to set exclusion limits at 90% confidence level on the kinetic mixing coupling constant between dark photons and ordinary photons.

Axion Haloscope

Target

"axion" a non-relativistic dark matter particle candidate Principle

coherent axion field → EM waves directly at the surfaces of dielectric disks

Detector

dielectric haloscope

- dielectric layers + <u>static magnetic field</u> for conversion
- photosensor for detecting converted photons

Axion Haloscope

Haloscope components:

- 25 dielectric layers of Si₃N₄ & SiO₂
- SPAD
- converging lens
- Mirror
- set-up prepared for Nuclear Magnetic Resonance (NMR) machine in NYUAD ~ 14 T

Axion Haloscope

Axion-photon coupling limits vs. axion mass

Adapted from LIGO Scientific Collaboration (2025)

Gravitational Waves

a new target for haloscopes

GW Detection

Target

"gravitational wave"

ripples in spacetime relativistic nature

Principle

Gertsenshtein effect: incoming gravitational wave in the presence of a magnetic field sources an effective current

Detector

17

dielectric haloscope

- dielectric layers + <u>static magnetic field</u> for conversion
- photosensor for detecting converted photons

GW Detection

18

Main Differences

- GW \rightarrow photon conversion also occurs in vacuum
- sourced EM waves inherit:
 - GW phase (position dependent)
 - GW propagation direction

Main Alterations

- operation in multiple modes (vacuum or dielectric stack)
- requirements
 - resonant operation: new requirement on effective disk thickness + limited number of disks
 - relaxed requirement on disk surface smoothness

Options with Axion Haloscope

- operation in GW **resonant mode** (with stack) → target specific frequency
- operation in GW **broadband mode** (without stack) → target frequency range
- next step: hybrid mode

get specific frequency → target frequency range

GW Target

- for the same axion haloscope setup ~ m_a 1-1.5 eV target: GW frequency ~250-360 THz
- possible sources in this f range
 - GW spectrum of the sun
 - primordial black holes
 - mergers
 - evaporating

22

Options with Axion Haloscope

- still in research phase
- estimation of sensitivity looked into
 - microwave cavity model (ADMX like)

Options with Axion Haloscope

- still in research phase
- estimation of sensitivity looked into microwave cavity model (ADMX like)

• $h_0 \sim 10^{-21}$: far from observation

Adapted from Franciolini et al. (2022)

Options with Axion Haloscope

- still in research phase
- estimation of sensitivity looked into
 - microwave cavity model (ADMX like)
 - dielectric haloscopes (MADMAX like)

Adapted from Franciolini et al. (2022)

Options with Axion Haloscope

- still in research phase
- estimation of sensitivity looked into
 - microwave cavity model (ADMX like)
 - dielectric haloscopes (MADMAX like)

h₀ ~ 10⁻²⁶ : unrealistically good!

Adapted from Franciolini et al. (2022)

Options with Axion Haloscope

- higher frequency = weaker signal
- main challenge is reaching high sensitivities

$$h_{\rm c,sto} \equiv \sqrt{f S_h(f)},$$

$$h_{\mathrm{e},\mathrm{sto}} = rac{H_0}{2\pi f} \left(3 \Omega_{\mathrm{GW}/f}
ight)^{1/2}$$

Adapted from Aggarwal et al. (2025)

Thank you!