

Theory remarks for Grav Net

Generalitat de Catalunya Departament de Recerca i Universitats Fundación

European Research Council

Cofinanciado por la Unión Europea

AGENCIA ESTATAL DE INVESTIGACIÓN

Milky Way in visible band

Milky Way in X rays

Spektr-RG-eROSITA all-sky map Nature volume 588, pages 227–231 (2020).

High frequency GWs (>10 kHz)

Exploring all possibilities!

Living Reviews in Relativity (2021) 24:4 https://doi.org/10.1007/s41114-021-00032-5

REVIEW ARTICLE

Challenges and opportunities of gravitational-wave searches at MHz to GHz frequencies

Nancy Aggarwal¹ \cdot Odylio D. Aguiar² \cdot Andreas Bauswein³ \cdot Giancarlo Cella⁴ · Sebastian Clesse⁵ · Adrian Michael Cruise⁶ · Valerie Domcke^{7,8,9} · Daniel G. Figueroa¹⁰ · Andrew Geraci¹¹ · Maxim Goryachev¹² · Hartmut Grote¹³ · Mark Hindmarsh^{14,15} · Francesco Muia^{9,16} (D) · Nikhil Mukund¹⁷ · David Ottaway^{18,19} · Marco Peloso^{20,21} · Fernando Quevedo¹⁶ · Angelo Ricciardone^{20,21} · Jessica Steinlechner^{22,23,24} · Sebastian Steinlechner^{22,23} · Sichun Sun^{25,26} · Michael E. Tobar¹² · Francisco Torrenti²⁷ · Caner Ünal²⁸ · Graham White²⁹

2011.12414 [gr-qc] (v2 2501.11723 [gr-qc])

Directions

1. Sources and waveform production

2. Response single antenna: analytics + simulations (realistic)

- 3. Optimization and network
- 4. Data analysis
- 5. New ideas

Directions

1. Sources and waveform production

2. Response single antenna: analytics + simulations (realistic)

- 3. Optimization and network
- 4. Data analysis
- 5. New ideas

WG1. Sources and waveform production

WG1. Sources and waveform production Luca Vis

Tasks:

Have templates ready to use

WG2. Response single antenna: analytics + simulations

From templates, derive signal

 $\eta_{sm} = \frac{\int_{V} dV \boldsymbol{E}_{sm}^{*}(\boldsymbol{x}) \left(i\omega_{G} \boldsymbol{J}_{\text{eff}}(\boldsymbol{x}) \right)}{\int_{V} dV \left| \boldsymbol{E}_{sm}(\boldsymbol{x}) \right|^{2}}$

Understand read out INCLUDING GWs! 0

Get a multimode readout

José Reina Younggeun Kim Jordan Gué

Implement simulations

For all WGI examples

Do it

Explore it and do it

Maybe 1 quanta?

Bi weekly meeting

Interaction of GWs with your sensors $h_{+,\times} \approx h_0 \cos \left(2\pi f(t-z) + \phi \right)$ UNIVERSALITY! Every sensor feels them! **Spin coupling** Energy/mechanical coupling **EM** coupling

 $\delta\omega \sim h\omega$

modify clocks at different locations

WG3. Optimization and network

Cavities/experiments of different kind \bigcirc

Orientation/distribution 0

Networking \bigcirc

Tasks:

José Reina Younggeun Kim Jordan Gué

Implement simulations

Simulate SNR and optimize

Quantum vs classical Network

A Global Network of HFGW Detectors

Further enhance sensitivity by combining HFGW detectors

Initial sites: Bonn, Mainz, Frascati, PSI

A Global Network of HFGW Detectors

Further enhance sensitivity by combining HFGW detectors

Initial sites: Bonn, Mainz, Frascati, PSI

GPS based data-acquisition scheme Experience from GNOME Network

- Nine small resonant cavities (5-9 GHz) operation of three cavities in one magnet
- One large resonant cavity (100 MHz)

GravNet

WG4. Data analysis

Tasks:

Generation of mock data \bigcirc

We need WG1/WG2/WG3 -> baby steps

Analysis of mock data

ML to be exploited

SGWBs vs coherent

Some correlations to exploit?

WG5. New ideas

Aggarwal et al. 2501.11723 [gr-qc])

Aggarwal et al. 2501.11723 [gr-qc])

Clear message:

Most likely we are not working with the best concept

- Broadband
- Fast

Tasks:

Get organized (get funds)

Reach the sensing community*

Map devices to signals

WG5. New ideas

- Mature enough (learn by doing)
- Network/escalation

Journal club

 $A^{\nu}\partial_{\nu}\left(\frac{1}{2}hF^{\mu\nu} + h^{\nu}_{\alpha}F^{\alpha\mu} - h^{\mu}_{\alpha}F^{\alpha\nu}\right) + B_{i}h_{ij}\left(t_{\psi}\right)\Sigma^{j} + m_{\psi}\ddot{h}_{ij}\left(t_{\psi}\right)x^{i}_{\psi}x^{j}_{\psi}$