

New MEGAlib's features and DC3 background simulations

COSI Germany meeting Savitri Gallego

MEGAlib's new features

Polarisation in Galactic coordinates

IAU Conventions

North X +Q -Q East East Tangent plane, looking inward Tangent plane, looking outward

North X

- By default MEGAlib is simulating the polarization relative to spacecraft coordinates
- But science papers usually uses the IAU convention to publish polarization angle and fraction
- Now MEGAlib can handle polarization in galactic coordinates (branch "develop-cosi")
- There is a source file example here

3

Earth Occultation

- DC2 was using zenith pointing
- Easy to handle Earth occultation : only generates particle with theta bigger than thetamax

Earth Occultation

- The angle between the incident photon and the Earth zenith in Galactic coordinates is calculated at time t,
- All events with an incident angle > the maximum angle are rejected
- More explanation and example are shown in D<u>C3</u>

DC3 background simulations

What is new compare to DC2?

- DC2 methodology
- DC3 new features :
 - 530km instead of 550km
 - o <u>pdr mass model</u>
 - use geant4 v11.2
 - Build-up of the activation (no more extrapolation)
 - 22 degree rocking implemented in the orientation file
 - Earth Occultation done in cosima
 - SAA passages with trapped protons component
 - solar modulation (extrapolated to 2027)
 - BGO hits will be saved (24h of orbit)

altitude change

- GC will vary in the range [9-11.5] GV for a equatorial orbit at 530km of altitude
- Dipole approximation (Smart et al. 2005) using IGRF value for g10 extrapolated to 2027

$$GC = rac{g_0^1 \cdot R_{Earth}}{4} \cdot \left(1 + rac{h}{R_{Earth}}
ight)^{-2} \cos^4(\lambda)$$

Change with DC2 input

- We use now a more up to date <u>Cumani</u> <u>code version</u>
 - Primary Proton/alpha are from hellmod
- Primary Electron/Positron from more up-to-date AMS data extrapolate to 2027 solar activity (see Francesco slides)
- Expected solar modulation : 520 MV

geomagnetic cut-off 10GV

Atmosphere 511 line

Ata B Neutron Monitor

•	We added the 511
	keV line to the
	Albedo photons

28.207e-3
 ph/cm2/s

should we add
 4.44 MeV line ?

Line or Quantity Averaged	Spectrum (Rigidity)	Interval	Low Activity Average Flux ^a (1980–1983, 1989)	High Activity Average Flux ^a (1984-1988)	Ratio High:Low
4.44 MeV	<7 GV	6 month	11.1 ± 0.2	12.8 ± 0.2	1.16 ± 0.03
	7-11 GV	6 month	6.4 ± 0.1	7.4 ± 0.2	1.14 ± 0.03
	>11 GV	6 month	3.9 ± 0.1	4.1 ± 0.1	1.03 ± 0.03
1.6 + 2.3 MeV	<7 GV	6 month	4.2 ± 0.1	4.9 ± 0.1	1.16 ± 0.05
	7-11 GV	6 month	2.4 ± 0.1	2.6 ± 0.1	1.09 ± 0.05
	>11 GV	6 month	1.6 ± 0.1	1.5 ± 0.1	0.92 ± 0.09
0.511 MeV	<7 GV	48 day	41.3 ± 0.1	45.7 ± 0.1	1.104 ± 0.004
	7-11 GV	48 day	29.9 ± 0.1	31.6 ± 0.1	1.056 ± 0.004
	>11 GV	48 day	23.3 ± 0.1	22.2 ± 0.1	1.051 ± 0.005
Alma Ata B neutrons	6.6 GV	6 month	8709	9385	1.08
Tsumeb neutrons	9.2 GV	6 month	11290	11865	1.05
Huancayo neutrons	13 GV	6 month	1711	1760	1.03

Table 1. Comparison of Average Fluxes in Selected y-Ray Lines During Periods of High and Low Solar Activity as Defined by the Alma

^aCompare Figures 4 and 5. Gamma-ray line fluxes in units of 10^{-3} photon cm⁻² s⁻¹. The low and high cosmic ray activity periods were defined by the Alma Ata B count rates being either above or below the mean for the period 1980–1989.

Harris et al. 2003 doi:10.1029/2003JA009958

Scale flux with altitude : 29.9 * (500/530) = 28.207 SMM average altitude 500km

SAA Input

- Input flux and LC produce by AP9
- We are only interested into activation induced by the protons so we will use spectrum and flux with Emin = 4MeV
 - improve the simulation time 0

proton cross section for different elements

 10^{2}

50

ENDF Request 16842, 2024-Nov-04,16:15:27 10

5

SAA Input

trapped protons

- IRENE AP9 v1.57.004
- use 3 months of COSI orbit and compute the diff flux for each position
- integrate along the energy to get the LC

SAA cut at 2 or 4 MeV

24h total rate for reco+select CO evt

- The shape of the rate is dominated by the SAA activation
- No clear differences between the 2 rocking when we look all the Ged

24h Spectrum for reco+select CO evt

24h DC3

3 months DC2

How good the simulations could be?

- no scaling : 50% comparison with data
- With scaling : 10-20%
- Lines quiet well reproduce

Back-up

BGO all panels

BGO panel y1

BGO panel y2

BGO panel x1

BGO panel x2

BGO panel bot 1

BGO panel bot 2

DC3 background input models

