

irfu

cea

Irakli Mandjavidze On behalf of P2 group @ Irfu, CEA Saclay

> Irfu, CEA Saclay Gif-sur-Yvette, 91191 France

Collaboration meeting Mainz 18/Sep/2024

- Reminder of the readout architecture
- Integration
 - \rightarrow Backend and services : near-detector versus remote
 - Data and LV power cables
 - \rightarrow Radiation
 - \rightarrow Network
- Next steps
- Last minute addition in train
 - \rightarrow work in progress *en vrac*

Readout organization

- Three layer readout : frontend backend processing farm
 - \rightarrow A 60° detector is read out by 10 frontend boards
 - \rightarrow A backend reads projective 30° sectors in each plane
 - Possibility for on-line hardware track finding
 - \rightarrow Scalable processing farm
 - As per throughout and online analysis needs

Scale

cea irfu

- \rightarrow 180 frontend boards
- \rightarrow 12 backend boards
- \rightarrow A system supervisor board
 - Clock and run control
- \rightarrow A 10 / 40 GE switch
 - Data
- \rightarrow A 1 / 10 GE switch
 - Slow control

• Full validation possible in a pilot run populating only two 30° projective sectors (1/6)

Frontend and backend components

- Frontend: SRS 128-channel VMM-based hybrid
 - \rightarrow 2 VMM3a ASICs (Atlas NSW)
 - \rightarrow Spartan 7 FPGA from Xilinx
 - \rightarrow Proprietary communication link over a HDMI cable
 - \rightarrow Production of 200 hybrids ongoing by SRS Technology
 - Expected by end 2024
- Backend: AXKU040 development board
 - \rightarrow Xilinx Kintex UltraScale FPGA XCKU040
 - ~0.5M flip-flops; 21 Mbit RAM; 2k DSPs; ~500 IO
 - \rightarrow 4 Gbyte DDR4 memory
 - \rightarrow 10 Gbit/s and 1 GE interfaces
 - \rightarrow 3 mezzanine connectors
 - Possibility to aggregate up to 16 frontends
 - \rightarrow 3 units acquired
 - \rightarrow Offer received for 15 units
 - Acquire in 2025

114

Spread of the readout system

Consider HDMI data cables

• There is a HDMI cable assembly per Hybrid : 180 assemblies in total

- Maintenance with remote backend is not handy : requires 180 reconnection cycles
- irakli.mandjavidze@cea.fr

Consider power supply cables

• Maintenance with remote backend is not handy : requires reconnection of all harnesses

cea irfu

irfu Under study : option based on TDK / Lambda Z10-40/LAN

- Module from 0 V to 10V 40 A / 400 W
 → Interlock
 - \rightarrow USB / LAN

• 6 units can be aggregated in a 19" shelf

H 83 x D 350 x W 434 12kg

• Handy to maintain : modules can be replaced separately

~50kg

2 units purchased, setup prepared to evaluate noise and remote regulation performance
 → Backup solution : Wiener PL506 power supply with that same granularity but less handy to maintain

Frontend radiation

• Dose estimates for ±0.5m around the beam \rightarrow 20 rad / h

Time	TID (krad)	Grade
Hour	0.02	
Day	0.5	Commercial
Month	14	
1 000 h	20	Rad tolerant (space)
3 months	43	
6 months	86	
9 months	130	
Year	173	
10 000 h	200	Rad hard

- NIEL : flux needs to be normalized to 1 MeV neutron equivalent to calculate fluence
 → Risks start from fluences > 10¹¹ 10¹² 1 MeV neq / cm²
- SEE effects : need to evaluate > 20 MeV proton flux
 - \rightarrow Xilinx gives some data to estimate SEE rates for flip-flops and memories : Spartan7

cea irfu

Near-backend radiation

 Dose estimates for area between 50 cm to 1m from ground → 2 rad / h

Time	TID (krad)	Grade
Hour	0	Commercial
Day	0.1	
Month	1.4	
1 000 h	2	
3 months	4	
6 months	9	
9 months	13	
Year	17	
10 000 h	20	Rad tolerant

- NIEL : flux needs to be normalized to 1 MeV neutron equivalent to calculate fluence
 → Risks start from fluences > 10¹¹ 10¹² 1 MeV neq / cm²
- SEE effects : need to evaluate > 20 MeV proton flux
 - → Xilinx gives some data to estimate SEE rates for flip-flops and memories : Kintex UltraScale

Network infrastructure

Reminder ٠

- \rightarrow Frontend data : ~120 Mbit/s 20% of link bandwidth
- \rightarrow Backend raw data : 1.5 Gbit/s 20% of a 10 GE link

1.5 Gbit/s

²²² ^{irfu} Mapping to planned network / computing infrastructure for P2

- Assume a near-detector backed, shell we consider near-detector Ethernet switches too?
 - \rightarrow At most 2 10 GE cables and 2 40 GE Ethernet fibers to depart
 - \rightarrow Versus 48 GE cables and 13 10 GE fibers in case of remote data and slow control switches

- Finalize radiation environment studies for frontends
 - \rightarrow Evaluate 1 MeV neq fluence and > 20 MeV proton flux
 - $\rightarrow\,$ Decide if irradiation campaigns need to be scheduled
- Make choice for the place of the backend and services
 - → Evaluate 1 MeV neq fluence and > 20 MeV proton flux
 - $\rightarrow\,$ Decide for near-detector or remote backend and services
 - Near-detector backend : devise proper shielding if necessary
 - Remote backend : validate 20 m long data link robustness
 - Work ongoing with encouraging preliminary results
- Make choice for LV power supply
 - \rightarrow Validate noise and remote regulation capability for 5 m and 20 m power cables
 - Work ongoing
 - $\rightarrow\,$ Decide among TDK Lambda and Wiener options
 - Asses volume and weight
- Make choice for network infrastructure
 - \rightarrow Near-detector or remote switches
 - \rightarrow Evaluate performance for expected data throughput
 - \rightarrow Decide for physical interfaces between switches
 - Optical vs electrical
 - 25 GE vs 4 GE
 - Redundancy

· Longer term decisions to be taken on the nature and performance of the processor cluster

cea irfu

Ongoing activities en vrac

2nd electronics test bench assembled for system-level developments
 → In addition to the setup dedicated to backend firmware development

- Work in progress in several directions ...
 - \rightarrow Spark protection
 - \rightarrow High rate operation
 - \rightarrow Backend fronted connectivity over lengthy cables

 $\rightarrow \dots$

Work in progress ...

- High rate operation with detector emulator
 - \rightarrow Negative exponential hit arrival at programmable rate on 64 channels VMM chip
 - Extendable to 128 channels to cover complete frontend
 - \rightarrow So far, channel hit rate of 100 kHz validated on single VMM of a Hybrid
 - 20 kHz rate expected
- Fronted-backend link length
 - \rightarrow Encouraging results for HDMI cables of up to 20 m
 - Synchronization established and data acquired
 - \rightarrow More studies needed
- Protection circuitry to reduce dead time due to sparks
 - \rightarrow Controversial results with some channels dead under heavy discharges from VMM Killer
 - Investigating with simulations and comparative measurements
- Transfer function studies
 - \rightarrow Known charge injection scan at various dynamic ranges
- High voltage filtering and ballast board
 - \rightarrow Up to 10 nA leakage current sensible to humidity
 - To be improved

Work in progress ...

- Clean 156.25 MHz clock reference source piggyback card for 10 GE on backend → 3.4 ps RMS jitter with 0.5 fs deterministic jitter
- Backend firmware development
 - \rightarrow CERN SRS firmware ported on the ALINX Kintex UltraScale board
 - \rightarrow Working to support from current 8 frontends to final 15 frontends
 - \rightarrow Working on 10 GE data link implementation
 - \rightarrow Embedded MicroBlase processor environment with Linux support
 - To be decided if to be used in final system
- Acquisition software
 - \rightarrow Restructuring SRS software for P2 Basket application
- Low voltage power supply
 - \rightarrow Validate TDK Lambda LV power modules
 - Remote regulation over various length harnesses
 - Using active electronics load
 - LAN based slow control
- Adaptation boards
 - \rightarrow Detector Frontend
 - \rightarrow Detector FEU/Dream electronics

