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The scientific method: how we create ‘knowledge’
Theory / model

usually mathematical

self-consistent

simple explanations, few (arbitrary) parameters

testable predictions / hypotheses

Experiment

modify or even reject theory in case of

disagrement with data

if theory requires too many adjustments it

becomes unattractive

generate surprises

Advance of scientific knowledge is evolutionary process

with occasional revolutions

Statistical methods are important part of this process

in particular in quantitative sciences like physics

Karl Popper

(1902–1994)
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Statistics in science
Statistics is needed to:

characterise and summarise experimental results (impractical to always deal with raw data)

quantify uncertainty of a measurement

assess whether two measurements of the same quantity are compatible,

combine measurements

estimate parameters of an underlying model or theory

test hypotheses:

determine whether a model is compatible with data

…
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Aims of this mini-series
Understand statistical concepts

I Ability to understand physics papers

I Know some methods / standard statistical toolbox

Statistical inference: from data to knowledge

I Should we believe a physics claim?

I Develop intuition

I Know (some) pitfalls: avoid making mistakes others have already made

Use tools

I Hands-on part with Python / Jupyter

I Application to your own work? You decide!
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Practical information
Two sessions:

1. Basics, introduction, statistical distributions

2. Parameter estimation, confidence intervals, hypothesis testing

About 60–90 minutes of lecture, hands-on tutorial in your own time

I hope this will be useful for you,

but keep in mind that there is much more

to statistics than can be covered

in a few brief hours.
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Useful reading material
Books:

G. Cowan, Statistical Data Analysis

R. Barlow, Statistics: A guide to the use of statistical methods in the physical sciences

L. Lyons, Statistics for Nuclear and Particle Physicists

A. J. Bevan, Statistical data analysis for the physical sciences

G. Bohm, G. Zech, Introduction to Statistics and Data Analysis for Physicists (available online)

Lectures on the web:

G. Cowan, Royal Holloway University London: Statistical Data Analysis

K. Reygers, U Heidelberg, Stat. Methods in Particle Physics
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Dealing with uncertainty
Underlying theory is probabilistic (quantum mechanics / QFT)

source of true randomness

Limited knowledge about measurement process

even without QM

random measurement errors

Things we could know in principle, but don’t

e.g. from limitations of cost, time, …

Quantify uncertainty using tools and concepts from probability
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Mathematical definition of probability

A∩B
A B

S

Kolmogorov axioms:

Consider a set S (the sample space) with subsets A, B, …(events).

Define a function on the power set of S, P : P(S) 7→ [0,1] with
1. P(A) ≥ 0 for all A ⊂ S

2. P(S) = 1

3. P(A ∪ B) = P(A) + P(B) if A ∩ B = ∅,

i.e. when A and B are exclusive

From these we can derive further properties:

P(Ā) = 1− P(A)
P(A ∪ Ā) = 1

P(∅) = 0

If A ⊂ B, then P(A) ≤ P(B)
P(A ∪ B) = P(A) + P(B) − P(A ∩ B)

for the mathematically inclined: proper treatment will use measure theory
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Interpretation — intuition about probability
Classical definition

I Assign equal probabilities based on symmetry of problem,

e.g. rolling ideal dice: P(6) = 1/6
I difficult to generalise, sounds somewhat circular

Frequentist: relative frequency, proportion of outcomes

I A,B, . . . outcomes of a repeatable experiment

P(A) = lim
n→∞

times outcome is A in n repetitions

n

Bayesian: subjective probability, degree of belief

I A,B, . . . are hypotheses (statements that are either true or false)

P(A) = degree of belief that A is true

…all three definitions consistent with Kolmogorov’s axioms
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Conditional probability, independent events
Conditional probability for two events A and B:

P(A|B) = P(A ∩ B)
P(B)

“probability of A given B”

Example: rolling dice

P(n < 3|n even) = P((n < 3) ∩ (n even))
P(n even) = 1/6

1/2
= 1/3

Events A and B independent ⇐⇒ P(A ∩ B) = P(A) · P(B)
A is independent of B if P(A|B) = P(A)
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Bayes’ theorem
Use definition of conditional probability:

P(A|B) = P(A ∩ B)
P(B) and P(B|A) = P(B ∩ A)

P(A)

But obviously P(A ∩ B) = P(B ∩ A), so:

Theorem

P(A|B) = P(B|A)P(A)
P(B)

Allows to ‘invert’ statements about probability:

of great interest to us. Want to infer P(theory|data) from P(data|theory)

Often these two are confused, knowingly or unknowingly

(advertising, political campaigns, …)
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Bayes’ theorem: degree of belief in a theory
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Example for Bayes’ theorem: Rare disease
Base probability (for anyone) to have a disease D:

P(D) = 0.0001

P(no D) = 0.9999

Tools for physicists: Statistics | SoSe 2024 | 13



Example for Bayes’ theorem: Rare disease
Base probability (for anyone) to have a disease D:

P(D) = 0.0001

P(no D) = 0.9999

Consider a test for D: result is positive or negative (+ or –):

P(+|D) = 0.98
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P(−|no D) = 0.97
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Example for Bayes’ theorem: Rare disease
Base probability (for anyone) to have a disease D:

P(D) = 0.0001

P(no D) = 0.9999

Consider a test for D: result is positive or negative (+ or –):

P(+|D) = 0.98

P(−|D) = 0.02

P(+|no D) = 0.03

P(−|no D) = 0.97

Suppose your result is +; should you be worried?

P(D|+) = P(+|D) P(D)
P(+|D) P(D) + P(+|no D) P(no D)

= 0.98× 0.0001
0.98× 0.0001+ 0.03× 0.9999 = 0.0033

Probability that you have disease is 0.32%, i.e. you’re probably ok
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Digression: what if prevalence is (much) higher?
Assume 100× higher prevalence in population:

P(D) = 0.01

P(no D) = 0.99

Then,

P(D|+) = P(+|D)P(D)
P(+|D)P(D) + P(+|no D)P(no D)

= 0.98× 0.01
0.98× 0.01+ 0.03× 0.99 = 0.248

should you be worried? This can’t be answered by statistics, of course …

At least take another (independent) test …
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Classification

Population P that either carries (P) or does not carry (N) a specific marker

D or no D, signal candidate or background event, …

Classifier (“test”): predict positive (PP) or negative (PN) outcome

+ or −

Confusion matrix

predicted

predicted pos. predicted neg.

a
c
tu
a
l positive true positive false negative

negative false positive true negative

Type I error: false positive

Type II error: false negative
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Classification

sensitivity = P(+|D)

= true positives

actual positives

= true positives

true positives+ false negatives

Higher sensitivity: lower type II error rate

specificity = P(−|no D)

= true negatives

actual negatives

= true negatives

true negatives+ false positives

Higher specificity: lower type I error rate

Given a concrete classifier, how can we pick the ‘best’ threshold?
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Criticisms — Frequentists vs. Bayesians
Criticisms of the frequentist interpretation

I n → ∞ can never be achieved in practice. When is n large enough?
I Want to talk about probabilities of events that are not repeatable

I P(rain tomorrow) — but there’s only one tomorrow

I P(Universe started with a big bang) — only one universe available

I P is not an intrinsic property of A, but depends on how the ensemble of possible outcomes was

constructed

I P(person I talk to is a physicist) strongly depends on whether I am at a conference or at the beach

Criticisms of the subjective interpretation

I ‘Subjective’ estimate has no place in science

I How can quantify the prior state of our knowledge?

‘Bayesians address the questions everyone is interested in by using

assumptions that no one believes, while Frequentists use impeccable

logic to deal with an issue that is of no interest to anyone’

— Louis Lyons
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Describing data
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Random variables and probability density functions
Random variable:

Variable whose possible values are numerical outcomes of a random phenomenon

Probability density function (pdf) of a continuous variable:

P(X found in [x, x + dx]) = p(x)dx

Normalisation:
+∞∫

−∞

p(x)dx = 1 x must be somewhere
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Visualisation: Histograms
Histogram

representation of the frequencies of numerical

outcome of a random phenomenon

pdf ' histogram for

infinite data sample

zero bin width

normalised to unit area

p(x) = lim
∆x→0

N(x)
N∆x
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Median, mean, and mode
Arithmetic mean of a data sample (‘sample mean’):

x̄ = 1

N

N

∑
i=1

xi

Mean of a pdf:

µ ≡ 〈x〉 ≡
∫

x p(x)dx

≡ expectation value E [x]

Median:

point with 50% probability above and 50% prob.

below

Mode:

most likely value

0 10 20 30 40 50 60
x

0.00

0.01

0.02

0.03

0.04

0.05

0.06

pd
f(x

)

Mean: 20.013

Median: 12.018

not necessarily the same, for skewed

distributions
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Variance, standard deviation
Variance of a distribution (pdf):

V(x) =
∫
dx p(x) (x − µ)2 = E [(x − µ)2]

Variance of a data sample

V(x) = 1

N
∑
i

(xi − µ)2 = x2 − µ2

Requires knowledge of true mean µ.

Replacing µ by sample mean x̄ results in underestimated variance!

Instead, use this:

V̂(x) = 1

N − 1
∑
i

(xi − x)2

Standard deviation:

σ =
√
V(x)
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Robustness?

Beware of distributions with large outliers:

Sample mean and variance as defined above not very good

(‘robust’) estimators for the shape of the bulk of the

distribution, can be grossly misleading!

Robust statistics deals with methods how to handle this — for

a short writeup and pointers to literature, see e.g.

https://www.stats.ox.ac.uk/~ripley/StatMethods/
Robust.pdf
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As of 31st May 2024, the average US

president has been convicted of 0.74

felonies
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Multivariate distributions
Outcome of an experiment

characterised by tuple (x1, . . . , xn)

P(A ∩ B) = f (x, y)dx dy

with f (x, y) the ‘joint pdf’

Normalisation∫
· · ·

∫
f (x1, . . . , xn)dx1 · · · dxn = 1

Sometimes, only the pdf of one component is wanted:

f1(x1) =
∫

· · ·
∫

f (x1, . . . , xn)dx2 · · · dxn

≈ projection of joint pdf onto individual axis: marginalised pdf
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Covariance and correlation
Covariance:

cov[x, y] = E [(x − µx)(y − µy)]

Correlation coefficient:

ρxy = cov[x, y]
σx σy

If x, y independent:

pdf factorises, i.e. f (x, y) = fx(x) fy(y),
and covariance becomes

E [(x − µx)(y − µy)] =
∫

(x − µx)fx(x)dx
∫

(y − µy)fy(y)dy = 0

Note: converse not necessarily true
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Covariance and correlation

Same (linear) correlation coefficient, but very different 2D shapes!
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Always visualise your data!
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Always visualise your data!
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Always visualise your data!

https://www.autodesk.com/research/publications/same-stats-different-graphsTools for physicists: Statistics | SoSe 2024 | 29
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Linear combinations of random variables
Consider two random variables x and y with known covariance cov[x, y]

〈x + y〉 = 〈x〉 + 〈y〉

〈ax〉 = a 〈x〉

V [ax] = a2V [x]

V [x + y] = V [x] + V [y] + 2 cov[x, y]

For uncorrelated variables, simply add variances.

How about combination of N independent measurements (estimates) of a quantity, xi ± σ, all drawn

from the same underlying distribution?

x̄ = 1

N
∑ xi best estimate

V [Nx̄] = N2σ

σx̄ = 1√
N

σ
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Combination of measurements: weighted mean
Suppose we have N independent measurements of the same quantity, but each with a different

uncertainty: xi ± δi
Weighted sum:

x = w1x1 +w2x2

δ2 = w2
1δ21 +w2

2δ22

Determine weights w1,w2 under constraint w1 +w2 = 1 such that δ2 is minimised:

wi =
1/δ2

i

1/δ2
1

+ 1/δ2
2

If original raw data of the two measurements are available, can improve this estimate by combining raw

data

alternatively, use log-likelihood curves to combine measurements
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Correlation 6= causation

F. Messerli, N Engl J Med 2012; 367:1562

Correlation coefficient: 0.791

significant correlation

(p < 0.0001)

0.4 kg/year/capita to produce

one additional Nobel laureate

improved cognitive function

associated with regular intake

of dietary flavonoids?
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Some important distributions
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Binomial distribution
N independent experiments

Outcome of each is either ‘success’ or ’failure’

Probability for success is p

f (k;N,p) =
(
N

k

)
pk(1− p)N−k E [k] = Np V [k] = Np(1− p)

(
N

k

)
= N!

k!(N − k)!
binomial coefficient: number of permutations to have k successes in N tries

Use binomial distribution to model processes with two outcomes

Example: detection efficiency = #(particles seen by detector) / #(all particles passing detector)

In the limit N → ∞,p → 0,Np = ν = const, binomial distribution can be approximated by a Poisson

distribution
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Poisson distribution

p(k; ν) = νk

k!
e−ν

E [k] = ν; V [k] = ν

Properties:

If n1, n2 follow Poisson distribution, then also

n1 + n2

Can be approximated by Gaussian for large ν

Examples:

Clicks of a Geiger counter in a given time

interval

Cars arriving at a traffic light in one minute
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Poisson distribution

p(k; ν) = νk

k!
e−ν

E [k] = ν; V [k] = ν

Properties:

If n1, n2 follow Poisson distribution, then also

n1 + n2

Can be approximated by Gaussian for large ν

Examples:

Clicks of a Geiger counter in a given time

interval

Cars arriving at a traffic light in one minute

probability of k events occurring in fixed interval of

time if events …

… occur with constant rate

… independently of time since last event
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Poisson distribution

p(k; ν) = νk

k!
e−ν

E [k] = ν; V [k] = ν

Properties:

If n1, n2 follow Poisson distribution, then also

n1 + n2

Can be approximated by Gaussian for large ν

Examples:

Clicks of a Geiger counter in a given time

interval

Cars arriving at a traffic light in one minute

Rare events:

Number of Prussian cavalrymen killed by

horse-kicks

Observe 10 army corps over 20 years:

122 deaths due to horse kicks,

therefore on average 0.61 deaths / (corps ×
year)
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Gaussian
A.k.a. normal distribution

g(x; µ, σ) = 1√
2πσ

exp
(

− (x − µ)2
2σ2

)
Mean: E [x] = µ

Variance: V [x] = σ2
- 3 - 2 - 1φ μ

,σ
2
(

0.8

0.6

0.4

0.2

0.0

−5 −3 1 3 5

x

1.0

−1 0 2 4−2−4

x)

0,μ=
0,μ=
0,μ=
−2,μ=

2 0.2,σ =
2 1.0,σ =
2 5.0,σ =
2 0.5,σ =

Standard normal distribution: µ = 0, σ = 1

Cumulative distribution related to error function

Φ(x) = 1√
2π

x∫
−∞

e− z2

2 dz = 1

2

[
erf
(

x√
2

)
+ 1

]

In Python: scipy.stats.norm(loc, scale)
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Why are Gaussians so useful?
Central limit theorem: sum of n random variables approaches Gaussian distribution, for large n

True, if fluctuation of sum is not dominated by the fluctuation of one (or a few) terms

Good example: velocity component vx of air molecules

So-so example: total deflection due to multiple Coulomb scattering.

Rare large angle deflections give non-Gaussian tail

Bad example: energy loss of charged particles traversing thin gas layer.

Rare collisions make up large fraction of energy loss á Landau PDF
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p-value
Probability for a Gaussian distribution corresponding to [µ − Zσ, µ + Zσ]:

P(Zσ) = 1√
2π

∫ +Z

−Z
e− x2

2 = Φ(Z) − Φ(−Z) = erf
(

Z√
2

)
68.27% of area within ±1σ

95.45% of area within ±2σ

99.73% of area within ±3σ

90% of area within ±1.645σ

95% of area within ±1.960σ

99% of area within ±2.576σ

p-value:

probability that random process (fluctuation)

produces a measurement at least this far from the

true mean

p-value := 1− P(Zσ)

Available in ROOT: TMath::Prob(Z*Z)
and Python: 2*stats.norm.sf(Z)

Deviation p-value (%)

1σ 31.73
2σ 4.55
3σ 0.270
4σ 0.00633
5σ 0.000057 3
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χ2 distribution
x1, . . . , xn be n independent standard normal (µ = 0, σ = 1) random variables. Then the sum of their

squares

z =
n

∑
i=1

x2i = ∑
i

(x′ − µ′)2
σ′2

follows a χ2 distribution with n degrees of freedom.

f (z; n) = zn/2−1

2n/2Γ( n
2
)
e−z/2, z ≥ 0

E [z] = n, V [z] = 2n

Quantify goodness of fit, compatibility of

measurements, …
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Student’s t distribution
Let x1, . . . , xn be distributed as N(µ, σ).

Sample mean and

estimate of variance:
x̄ = 1

n
∑
i

xi , σ̂2 = 1

n − 1
∑
i

(xi − x̄)2

Don’t know true µ, therefore have to estimate variance by σ̂.

x̄−µ

σ/
√
n
follows N(0,1) x̄−µ

σ̂/
√
n
not Gaussian:

Student’s t-distribution with n − 1 d.o.f.
f (t; n) =

Γ( n+1
2

)
√
nπΓ( n

2
)

(
1+ t2

n

)− n+1
2

For n → ∞, f (t; n) → N(t;0,1)
Applications:

Hypothesis tests: assess statistical

significance between two sample means

Set confidence intervals (more of that

later)
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Tools
Usable and useful tools (e.g. for your analysis) depend on environment / external constraints and other

factors external constraints and other factors

within working group

international collaboration

personal preferences

…

Don’t underestimate the cost of choosing a different approach than everyone else around you!

external constraints and other factors It may be worth it, though; just be aware of the implications!

For example: R vs python vs ROOT? Well-maintained or niche packages in python?
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Tools
From my own experience with data analysis in HEP experiments:

To paraphrase Willem van der Poel’s ‘Zero One Infinity’ rule:

The only numbers you should care about are Zero, One, and Infinity

If you have to do something more than once, automate!

Corollary: interactive tools are nice, but scripts are much better ‘in production’,

especially to produce plots

By all means explore your data using JupyterLab or other interactive tools,

but then export the result as executable script

Use a version control system, such as git, to keep track of changes in your code

Make use of well-maintained libraries, toolkits &c for common tasks

Yes, you can write your own algorithms to perform function minimisation or matrix inversion,

and it is very instructive to do so

— but should you use this ‘in production’?
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Motivation for this lecture
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Count “events”, signal + background

Q: is there a signal at all? significance? where is it? how wide is it?
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Parameter estimation
Underlying assumption: data points that we measure sample an underlying, true, distribution

examples:

I decay of radioactive isotope: decay rate follows exponential distribution

I mass and line width of a broad resonance: Breit-Wigner (Lorentzian) shape

I …

True shape may not be exactly known, but maybe can approximate with analytic function with a

few parameters

detector resolution may ‘smear out’ measured values from true value

Our task:

determine the parameters defining the underlying distribution

would like to have an objective measure of how well model describes data: goodness of fit
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Parameter estimation: uncertainties

In addition to point estimate (‘what is the lifetime τ of this isotope?’, ‘how large is the signal strength?’):

uncertainty (a.k.a. ‘error’) on this quantity, confidence interval

Some very well known ‘rules of thumb’:

Counts of random events: if Poissonian is a good assumption, N ±
√
N for large-ish N

‘Gaussian error propagation’

helpful tool: python package uncertainties
https://pythonhosted.org/uncertainties/user_guide.html
á live demo
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In 2006:Mtop = 174.3± 5.1GeV/c2

What does this mean?

Assuming that the authors quote 68% (“1 σ”) uncertainties

68% of top quarks have masses between 169.2 and 179.4GeV/c2

WRONG: all top quarks have same mass!

The probability of Mtop being in the range 169.2− 179.4GeV/c2 is 68%
WRONG: Mtop is what it is, it is either in or outside this range. P is 0 or 1.

Mtop has been measured to be 174.3GeV/c2 using a technique which has a 68% probability of

being within 5.1GeV/c2 of the true result
RIGHT
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Mtop has been measured to be 174.3GeV/c2 using a technique which has a 68% probability of

being within 5.1GeV/c2 of the true result
RIGHT
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In 2006:Mtop = 174.3± 5.1GeV/c2

What does this mean?

Assuming that the authors quote 68% (“1 σ”) uncertainties

68% of top quarks have masses between 169.2 and 179.4GeV/c2

WRONG: all top quarks have same mass!

The probability of Mtop being in the range 169.2− 179.4GeV/c2 is 68%
WRONG: Mtop is what it is, it is either in or outside this range. P is 0 or 1.

Mtop has been measured to be 174.3GeV/c2 using a technique which has a 68% probability of

being within 5.1GeV/c2 of the true result
RIGHT

if we repeated the measurement many times, we would obtain many different intervals; they would

bracket the true Mtop in 68% of all cases

Tools for physicists: Statistics | SoSe 2024 | 46



Point estimates, limits

Often reported: point estimate and its standard deviation, θ̂ ± σ̂θ̂ .

In some situations, an interval is reported instead, e.g. when

p.d.f. of the estimator is non-Gaussian, or

there are physical boundaries on the possible values of the parameter

Goals:

communicate as objectively as possible the result of the experiment

provide an interval that is constructed to cover the true value of the parameter with a specified

probability

provide information needed to draw conclusions about the parameter or to make a particular

decision

draw conclusions about parameter that incorporate stated prior beliefs

With sufficiently large data sample, point estimate and standard deviation essentially satisfy all these

goals.
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Parameter estimation
Parameters of a pdf are constants that characterise

its shape, e.g.

f (x; θ) = 1

θ
e−x/θ

x: random variable

θ: shape parameter, here: lifetime τ
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Suppose we have a sample of observed values,

~x = (x1, . . . , xn),
independent, identically distributed (i.i.d.).

Want to find some function of the data to estimate the parameters

θ̂(~x) Estimator for θ

Often, more than one parameter: ~θ
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Properties of estimators
Consistency Estimator is consistent if it

converges to the true value

lim
n→∞

θ̂ = θ

Bias Difference between expectation

value of estimator and true value

b ≡ E [θ̂] − θ

Efficiency Estimator is efficient if its variance

V [θ̂] is small

Example: estimators for lifetime of a particle
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Unbiased estimators for mean and variance of a distribution
Estimator for the mean:

µ̂ = x̄ = 1

n

n

∑
i=1

xi

b = E [µ̂] − µ = 0; V [µ̂] = σ2

n , i.e. σµ̂ = σ√
n

Estimator for the variance:

s2 = σ̂2 = 1

n − 1

n

∑
i=1

(xi − x̄)2

b = E [s2] − σ2 = 0

V [s2] = σ4

n

(
(κ − 1) + 2

n − 1

)
κ = µ4/σ4: kurtosis.

Note: even though s2 is unbiased estimator for variance σ2,

s is a biased estimator for s.d. σ (have to apply non-linear function to get s from s2)
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Likelihood function for i.i.d. data
Suppose we have a measurement of n independent values (i.i.d.)

~x = (x1, . . . , xn)

drawn from the same distribution

f (x;~θ), ~θ = (θ1, . . . , θm)

The joint pdf for the observed values~x is given by

L(~x;~θ) =
n

∏
i=1

f (xi ;~θ) likelihood function
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Likelihood function for i.i.d. data
Suppose we have a measurement of n independent values (i.i.d.)

~x = (x1, . . . , xn)

drawn from the same distribution

f (x;~θ), ~θ = (θ1, . . . , θm)

The joint pdf for the observed values~x is given by

L(~x;~θ) =
n

∏
i=1

f (xi ;~θ) likelihood function

Note

Likelihood L(~θ) is not a pdf: not normalized (unclear whether
∫
dθL(θ) exists at all)

Can be normalized using ∫
dθL(θ)p(θ)

but p(θ) not uniquely determined! (used in Bayesian reasoning: prior)
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Likelihood function for i.i.d. data

L(~x;~θ) =
n

∏
i=1

f (xi ;~θ)

Consider~x as constant, so L(~x;~θ) is a function of the parameters ~θ only.

The maximum likelihood estimate (MLE) of the parameters are the values ~θ for which L(~x;~θ) has a
global maximum.

For practical reasons, usually use

log L(~x;~θ) =
n

∑
i=1

log f (xi ;~θ)

(computers can cope with sum of small numbers much better

than with product of small numbers)
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ML Example: Exponential decay
Consider exponential pdf: f (t; τ) = 1

τ e
−t/τ

Independent measurements drawn from this distribution: t1, t2, . . . , tn
Likelihood function:

L(τ) = ∏
i

1

τ
e−ti/τ

L(τ) is maximal where log L(τ) is maximal:

log L(τ) =
n

∑
i=1

log f (ti ; τ) =
n

∑
i=1

(
log 1

τ
− ti

τ

)

Find maximum:

∂ log L(τ)
∂τ

= 0 ⇒
n

∑
i=1

(
−1

τ
+ ti

τ2

)
= 0 ⇒ τ̂ = 1

n
∑
i

ti
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ML Example: Exponential decay
Raw data (100 ‘measurements’)
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ML Example: Gaussian
Consider x1, . . . , xn drawn from Gaussian(µ, σ2)

f (x; µ, σ2) = 1√
2πσ

e
− (x−µ)2

2σ2

Log-likelihood function:

log L(µ, σ2) = ∑
i

log f (xi ; µ, σ2) = ∑
i

(
log 1√

2π
− log σ − (xi − µ)2

2σ2

)

Derivatives w.r.t µ and σ2:

∂ log L(µ, σ2)
∂µ

= ∑
i

xi − µ

σ2
; ∂ log L(µ, σ2)

∂σ2
= ∑

i

(
(xi − µ)2
2σ4

− 1

2σ2

)
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ML Example: Gaussian
Setting derivatives w.r.t. µ and σ2 to zero, and solving the equations:

µ̂ = 1

n
∑
i

xi ; σ̂2 = 1

n
∑
i

(xi − µ̂)2

Find that the ML estimator for σ2 is biased!

For Gaussian distribution, µ and σ can be estimated simply from histogram mean and RMS!
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Properties of the ML estimator
ML estimator is consistent, i.e. it approaches the true value asymptotically

In general, ML estimator is biased for finite n

(need to check size of bias)

ML estimator is invariant under parameter transformation

ψ = g(θ) ⇒ ψ̂ = g(θ̂)
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Averaging measurements with Gaussian uncertainties
Assume n measurements, same mean µ, but different resolutions σ

f (x; µ, σi) = 1√
2πσi

e
− (x−µ)2

2σ2
i

log-likelihood, similar to before:

log L(µ) = ∑
i

(
log 1√

2π
− log σi −

(xi − µ)2

2σ2
i

)

We obtain formula for weighted average, as before:

∂ log L(µ)
∂µ

∣∣∣∣
µ=µ̂

!= 0 ⇒ µ̂ =
∑i

xi
σ2
i

∑i
1
σ2
i
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Averaging measurements with Gaussian uncertainties
Uncertainty? Taylor expansion exact, because log L(µ) is parabola:

log L(µ) = log L(µ̂) +
[

∂ log L
∂µ

]
µ=µ̂

(µ − µ̂)︸ ︷︷ ︸
=0

−h

2
(µ − µ̂)2, h = − ∂2 log L(µ)

∂µ2

∣∣∣∣∣
µ=µ̂

This means that likelihood function is a Gaussian:

L(µ) ∝ exp
(

−h

2
(µ − µ̂)2

)
with a standard deviation

σµ̂ = 1/
√
h =

 ∂2 log L(µ)
∂µ2

∣∣∣∣∣
µ=µ̂

−1

h = ∑
i

1

σ2
i

⇒ σµ̂ =
(

∑
i

1

σ2
i

)−1/2

Tools for physicists: Statistics | SoSe 2024 | 59



Uncertainty bounds
Likelihood function with only one parameter:

L(~x; θ) = L(x1, . . . , xn; θ) =
n

∏
i=1

f (xi ; θ)

and θ̂ an estimator of the parameter θ

Without proof: it can be shown that the variance of a (biased, with bias b) estimator satisfies

V [θ̂] ≥
(1+ ∂b

∂θ )2

E
[
− ∂2 log L

∂θ2

]
Cramér-Rao minimum variance bound (MVB)
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Uncertainty of the MLE: Approach I
Approximation

E

[
− ∂2 log L

∂θ2

]
≈ − ∂2 log L

∂θ2

∣∣∣∣∣
θ=θ̂

good for large n (and away from any explicit boundaries on θ)

In this approximation, variance of ML estimator is given by

V [θ̂] = −
(

∂2 log L
∂θ2

∣∣∣∣∣
θ=θ̂

)−1

so we only need to evaluate the second derivative of log L at its maximum.

Tools for physicists: Statistics | SoSe 2024 | 61



Uncertainty of the MLE: Approach II (‘graphical method’)
Taylor expansion of log L around maximum:

log L(θ) = log L(θ̂) +
[

∂ log L
∂θ

]
θ=θ̂

(θ − θ̂)︸ ︷︷ ︸
=0

+1

2

[
∂2 log L

∂θ2

]
θ=θ̂

(θ − θ̂)2 + · · ·

If L approximately Gaussian (log L approx. a parabola):

log L(θ) ≈ log Lmax − (θ − θ̂)2

2σ̂2
θ̂

Estimate uncertainties from the points where log L has dropped by 1/2 from its maximum:

log L(θ̂ ± σ̂θ̂) ≈ log Lmax − 1

2

This can be used even if L(θ) is not Gaussian
If L(θ) is Gaussian: results of approach I & II identical
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Example:
uncertainty of the decay time for an exponential decay

Variance of the estimated decay time:

∂2 log L(τ)
∂τ2

= ∑
i

(
1

τ2
− 2

ti

τ3

)
= n

τ2
− 2

τ3
∑
i

ti = n

τ2

(
1− 2τ̂

τ

)
Thus,

V [τ̂] = −
(

∂2 log L(τ)
∂τ2

)−1

τ=τ̂

= τ̂2

n

⇒ σ̂τ̂ = τ̂√
n

Tools for physicists: Statistics | SoSe 2024 | 63



Exponential decay: illustration
20 data points sampled from f (t; τ) = 1

τ e
−t/τ with τ = 2
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ML estimate:

τ̂ = 1.65

σ̂ = 1.65/
√
20 = 0.37 using quadratic approximation of L(τ)

or σ̂ = +0.47
−0.34 using shape of − log L curve
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Exponential decay: log L for different sample sizes
10 data points

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
 (s)τ

16−

15.5−

15−

14.5−

14−

13.5−

13−

12.5−

12−

Pr
oj

ec
tio

n 
of

 lo
g 

L
 (

 / 
s 

)

quadratic approximation for log L
not very good

500 data points
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quadratic approximation for log L excellent

Tools for physicists: Statistics | SoSe 2024 | 65



Variance of the ML estimator form parameters
In limit of large sample size, L approaches multivariate Gaussian distribution for any probability density :

L(~θ) ∝ exp
(

−1

2
(~θ − ~̂θ)TV−1[~̂θ](~θ − ~̂θ)

)
Variance of ML estimator reaches MVB (minimum variance bound), related to the Fisher information

matrix:

V [~̂θ] → I(θ)−1, Ijk [~θ] = −E

[
∂2 log L(~θ)

∂θj∂θk

]
Covariance matrix of the estimated parameters:

V [~̂θ] ≈
[

− ∂2 log L(~x;~θ)
∂~θ2

∣∣∣∣∣
~θ=~̂θ

]−1

Standard deviation of a single parameter:

σ̂θ̂j
=
√

(V [~̂θ])jj
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MLE in practice: numeric minimisation

Analytic expression for L(θ) and its derivatives often not easily known

Use a generic minimiser like MINUIT to find (global) minimum of − log L(θ)

Typically uses gradient descent method to find minimum and then scans around minimum to obtain

Lmax − 1/2 contour

make sure you don’t get stuck in a local minimum: check likelihood profiles

á see today’s practical part for a hands-on
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MINUIT
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MINUIT

generic minimiser

around since the 1970s (Fred James, CERN; first implementation in FORTRAN)

ported to C++ (Minuit2 in ROOT), Python interface (iminuit)

features:

several algorithms for minimisation

one of the few minimisers that returns estimates for parameter errors

compute confidence intervals by scanning likelihood function around minimum

…

use for generic minimisation only — dedicated fit routines (e.g. for track fits) may have better

performance
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Bounds on parameters in MINUIT
Sometimes, you may want to bound the allowed range of fit parameters

e.g. to prevent (numerical) instabilities or

avoid unphysical results (‘fraction f should be in [0,1]’, ‘mass ≥ 0’)

MINUIT internally transforms parameter y with two-sided bounds with an arcsin(y) function to an

unbounded parameter x:
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Bounds on parameters in MINUIT

If fitted parameter value is close to boundary, errors

will become asymmetric and maybe even incorrect

Placing very large limits ’just in case’ (such as

[0,1010]) can lead to total loss of precision for small

parameter values

Try to find alternative parametrisation to avoid region of instability.

E.g. complex number

z = reiφ with bounds r ≥ 0, 0 ≤ φ < 2π

z = x + iy may be better behaved

If bounds were placed to avoid ‘unphysical’ region, consider not imposing the limits and dealing

with the restriction to the physical region after the fit.
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Extended ML method

In standard ML method, information about unknown parameters is encoded in shape of the distribution

of the data.

Sometimes, the number of observed events also contains information about the parameters (e.g. when

measuring a decay rate).

Normal ML method: ∫
f (x;~θ)dx = 1

Extended ML method: ∫
q(x;~θ)dx = ν(~θ) = predicted number of events

Tools for physicists: Statistics | SoSe 2024 | 71



Extended ML method (II)
Likelihood function becomes:

L(~θ) = νn e−ν

n! ∏
i

f (xi ;~θ) where ν ≡ ν(~θ)

And log-likelihood function:

log L(~θ) = −log(n!) − ν(~θ) + ∑
i

log[f (xi ;~θ)ν(~θ)]

log n! does not depend on parameters. Can be omitted in minimisation
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Application of Extended ML method
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Example:

Two-component fit (signal + background)

Unbinned ML fit, histogram for visualisation only

Want to obtain meaningful estimate of the uncertainties

of signal and background yields

Normalised pdf:

f (x; rs,~θ) = rsfs(x;~θ) + (1− rs)fb(x;~θ)

rs = s

s + b
, rb = 1− rs = b

s + b

− log L̃(s,b,~θ) = s + b − ∑
i

log[sfs(xi ;~θ) + bfb(xi ;~θ)]
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Application of Extended ML method (II)

Could have just fitted normalised pdf to our n events, with rs an additional parameter.

Good estimate of the number of signal events: rs × n

However, σrs × n is not a good estimate for the variation of the number of signal events:

ignores fluctuations of n.

Using extended ML fixes this.
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Least squares from ML

Consider n measured values

y1(x1), y2(x2), . . . , yn(xn), assumed to be

independent Gaussian r.v. with known variances,

V [yi ] = σ2i .

x y σy
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Least squares from ML

Consider n measured values

y1(x1), y2(x2), . . . , yn(xn), assumed to be

independent Gaussian r.v. with known variances,

V [yi ] = σ2i .

Assume we have a model for the functional

dependence of yi on xi ,

E [yi ] = f (xi ;~θ)

Want to estimate ~θ

Likelihood function:

L(~θ) = ∏
i

1√
2πσi

exp

− 1

2

(
yi − f (xi ;~θ)

σi

)2
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Least squares from ML (II)
Log-likelihood function:

log L(~θ) = −1

2
∑
i

(
yi − f (xi ;~θ)

σi

)2

+ terms not depending on ~θ

Maximising this is equivalent to minimising

χ2(~θ) = ∑
i

(
yi − f (xi ;~θ)

σi

)2

so, for Gaussian uncertainties, method of least squares coincides with maximum likelihood method.

Error definition: points where χ2 = χ2
min

+ Z2 for a Zσ interval

(compare: log L = log Lmax − 1
2
Z2 for MLE)
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Linear least squares
Important special case: consider function linear in the parameters:

f (x;~θ) = ∑
j

aj(x)θj n data points, m parameters

χ2 in matrix form:

χ2 = (~y − A~θ)TV−1(~y − A~θ), Ai,j = aj(xi)

=~yTV−1~y − 2~yTV−1A~θ +~θTATV−1A~θ

Set derivatives w.r.t. θi to zero:

∇χ2 = −2(ATV−1~y − ATV−1A~θ) = 0

Solution:

~̂θ = (ATV−1A)−1ATV−1~y ≡ L~y
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Linear least squares
Covariance matrix U of the parameters, from error propagation

(exact, because estimated parameter vector is linear function of data points yi )

U = LVLT

= (ATV−1A)−1

Equivalently, calculate numerically

(U−1)ij = 1

2

[
∂2χ2

∂θi∂θj

]
~θ=~̂θ
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Example: straight line fit

y = θ0 + θ1x

Conditions ∂χ2/∂θ0 = 0 and ∂χ2/∂θ1 = 0 yield two linear equations with two variables that are easy to

solve.

With the shorthand notation

[z] := ∑
i

z

σ2
i

we finally obtain

θ̂0 = [x2][y] − [x][xy]
[1][x2] − [x][x]

, θ̂1 = −[x][y] + [1][xy]
[1][x2] − [x][x]

Simple, huh? At least, easy to program and compute, given a set of data

(I’ll put the complete calculation for this in the appendix of the slides)
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Example: straight line fit
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x
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2 / ndof = 2.3 / 3
a = 1.162 ± 0.460
b = 0.614 ± 0.153

fit
data

Analytic fit result:

θ̂0 = [x2][y] − [x][xy]
[1][x2] − [x][x]

= 1.16207

θ̂1 = −[x][y] + [1][xy]
[1][x2] − [x][x]

= 0.613945

Covariance matrix of (θ0, θ1):

U = (ATV−1A)−1

=
(

0.211186 −0.064603 5
−0.064603 5 0.023410 5

)

Error band from

e2(x) = ~g(x)TU~g(x) with~g = ∇f (x;~θ)
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Example: straight line fit
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a = 1.162 ± 0.460
b = 0.614 ± 0.153

fit
data

Numerical estimate with MINUIT:
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Fitting binned data
Very popular application of least-squares fit: fit a model (curve) to binned data (a histogram)

Number of events occurring in each bin j is assumed to follow Poisson distribution with mean fj .

χ2 =
m

∑
j=1

(nj − fj)2

fj

Further common simplification: ‘modified least-squares method’, assuming that σ2nj = nj :

χ2 ≈
m

∑
j=1

(nj − fj)2

nj

Can get away with this when all nj are sufficiently large, but what about bins with small contents, or

even zero events?

á Frequently, bins with nj = 0 are simply excluded.

This throws away information, and will lead to biased results of your fit!
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Fitting binned data
Example: exponential distribution, 100 events

Oser, https://www.phas.ubc.ca/~oser/p509/Lec_09.pdf

red: true distribution

black: fit

The more bins you have with small

statistics, the worse the MLS fit

becomes.

ML method gives more reliable

results in this case.

If you must use MLS, then at least

rebin your data, at the loss of

information.
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Practical estimation — verifying the validity of your fits
Want to demonstrate that

your fit procedure gives, at least on average, the correct answer: no bias

uncertainty quoted by your fit is an accurate measure for the statistical spread in your

measurement: correct error

Validation is particularly important for low-statistics fits

intrinsic ML bias proportional 1/n

Also important for problems with multi-dimensional observables:

mis-modelled correlations between observables can lead to bias
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Basic validation strategy
Simulation study

1. Obtain (very) large sample of simulated events

2. Divide simulated events in O(100− 1000) independent samples with the same size as the
problem under study

3. Repeat fit procedure for each data-sized simulated sample

4. Compare average value of fitted parameter values with generated value

à demonstrate (absence of) bias

5. Compare spread in fitted parameter values with quoted parameter error

à demonstrate (in)correctness of error
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Practical example — validation study
Example fit model in 1D (B mass)

signal component is Gaussian centred at B

mass

background component is ARGUS function

(models phase space near kinematic limit)

q(m; nsig, nbkg,~psig,~pbkg)

= nsigG(m;~psig) + nbkgA(m;~pbkg)
5.2 5.21 5.22 5.23 5.24 5.25 5.26 5.27 5.28 5.29 5.3

 (GeV)ESm

0

5

10

15

20

25

30

35

40

E
ve

nt
s 

/ (
 0

.0
01

 G
eV

 )

Fit parameter under study: nsig

result of simulation study:

1000 experiments

with
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= 800

distribution of nfitsig

…looks good
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Validation study — pull distribution
What about validity of the error estimate?

distribution of error from simulated

experiments is difficult to interpret …

don’t have equivalent of n
gen
sig

for the error

Solution: look at pull distribution

Definition:

pull(nsig) ≡
nfit
sig

− n
gen
sig

σfitn

Properties of pull:

I follows Gaussian distribution if parameter and

error ‘sensible’

I Mean is 0 if no bias

I Width is 1 if error is correct
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 0.030±pullMean = -0.0246 

 0.021±pullSigma =  0.954 
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Validation study — extended ML!
As an aside, ran this toy study also with standard (not extended) ML method:

Extended
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 0.030±pullMean = -0.0246 
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σ(pull) = 0.954± 0.021
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 0.0032±pullMean = -0.00174 

 0.000051±pullSigma =  0.100000 

σ(pull) = 0.001
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Validation study — low statistics example
Special care needs to be taken when fitting small data samples,

also if fitting small signal component in large sample

Possible causes of trouble

χ2 estimators become approximate as Gaussian approximation of Poisson statistics becomes

inaccurate

ML estimators may no longer be efficient

error estimate from 2nd derivative inaccurate

Bias term ∝ 1/n may no longer be small compared to 1/
√
n

In general, absence of bias, correctness of error cannot be assumed.

Use unbinned ML fits wherever possible — more robust

explicitly verify the validity of your fit
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Fit bias at low n
Low statistics example:

model as before, but with
〈
n
gen
sig

〉
= 20

Result of simulation study:
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 0.032±pullMean =  0.096 

 0.023±pullSigma =  1.023 

Distributions become asymmetric at low statistics

fit is positively biased
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Place limit on nsig?

Very tempting to limit signal yield to be ≥ 0

After all, negative signal yield is unphysical!

But: remember shape of nsig in our toy experiments. Removing small values of nsig will introduce

(additional) positive bias
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Validation study — how to obtain 107 simulated events?
Practical issue: usually need very large amounts of simulated events for a fit validation study

Of order 1000x (number of events in data), easily > 106 events

Using data generated through full (GEANT-based) detector simulation can be prohibitively

expensive

Solution: sample events directly from fit function

Technique called toy Monte Carlo sampling

Advantage: easy to do, very fast

Good to determine fit bias due to low statistics, choice of parametrisation, bounds on parameters,

…

Cannot test assumptions built in to fit model:

absence of correlations between observables, …

still need full simulation for this
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Confidence intervals

Tools for physicists: Statistics | SoSe 2024 | 93



Confidence intervals: Choices, choices!

We can choose:

The confidence level

two-sided confidence intervals: typically 68%, corresponding to ±1σ

upper (or lower) limits: frequently 90%, but 95% not uncommon …

Whether to quote an upper limit or a two-sided confidence interval

What sort of two-sided limit

central (i.e. symmetric), shortest, …

Important: document what you are doing!
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Estimation of confidence intervals
Typically, use fit to determine event yields or parameters of a distribution

Least square fit (for binned datasets) or maximum likelihood fits (can also deal with unbinned data)

Error definition, for one degree of freedom:

LSQ : 1σ confidence interval from S = Smin + 1

ML : 1σ confidence interval from log L = log Lmax − 1
2

nσ conf. intervals from 2∆ log L = n2

See today’s practical part what happens for joint confidence region for ν parameters

Tools for physicists: Statistics | SoSe 2024 | 95



Construction of frequentist confidence intervals
Neyman construction of ‘confidence belts’:

for a given value of parameter θ, find interval of possible measured values x such that [x1, x2] is a CL
confidence interval:

Possible experimental values x

p
a
ra

m
e
te

r 
θ x

2
(θ), θ

2
(x) 

x
1
(θ), θ

1
(x) 

����

����

����

����

x
1
(θ

0
) x

2
(θ

0
) 

D(α)

θ
0

then, for given experimental outcome x0, read off vertically range of parameter θ.

Has all nice properties one would like to have: in particular coverage

Can be pre-computed, e.g. for counting statistics (Poisson)
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Constrained parameters
Measure a mass

MX = −2± 5GeV

or even

MX = −5± 2GeV

‘MX lies between −7 and −3’ with 68% confidence

???

Counting experiment

Expect 2.8 background events

See 0 events; so, 90% CL upper limit is 2.3 events

so, signal < −0.5 events

???
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What’s happened?

Two views:

Nothing has gone wrong

(Up to) 10% of our 90% CL statements can be

wrong; this is just one of them

Publish this, to avoid bias!

Everything wrong!

There are physical constraints (masses are

non-negative, so are cross sections!)

No way to input this into the statistical

apparatus

We will not publish results that are manifestly

wrong

This is broken and needs fixing
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What should be done with ‘unphysical’ results?

Best, but mostly not possible: publish full likelihood (or log-likelihood) function. This allows optimal

combination of results, but is rarely done.

Preferred solution: publish both solutions,

i.e. the ‘raw’, maybe nonsensical two-sided confidence interval,

and one-sided C.I. taking extra constraints into account

May have to fight against (internal and external) referees who insist that publishing a two-sided

confidence interval is equivalent to claiming “observation”
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Bayesian credible intervals
After a fit of our model to data: have likelihood function

L(~x|~θ)

(reminder: this makes a statement on the data given a set of parameters. In general, not normalised, i.e.

not a p.d.f.)

Want to turn this into a statement about the model parameters ~θ given our data~x: use Bayes’ theorem

b(~θ|~x) = L(~x|~θ) × P(~θ)∫
L(~x|~θ) × P(θ)d~θ

with a suitable prior P(~θ)
b(~θ|~x): Bayes’ distribution
if it exists, call it the posterior p.d.f. for the parameters

b(~θ|~x) updates our prior knowledge of θ with the new measurement
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Bayesian credible intervals
Bayesian approach: report full posterior p.d.f. (i.e. the Bayes’ distribution)

If a range is desired: integrate posterior p.d.f. b(θ|x)

1− α =
∫ θup

θlo
b(θ|x)dθ

e.g. 1− α = 0.9: “90% credible interval”

Several choices possible to construct [θlo, θup]:

[−∞; θlo] and [θup; ∞] both correspond to probability α/2

Symmetric interval around maximum value of b, corresponding to probability 1− α

b(θ|x) higher than any θ not belonging to the set

…
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Choice of prior
Some remarks on the prior P(θ):

How to parametrise ‘complete ignorance’?

Flat prior: hope that L is sufficiently peaked that we can ‘cut off’ large values

e.g. use P = 1/(Σ+ − Σ−) around maximum of L and let Σ± → ±∞

But: can easily implement ‘physical limits’ such as

‘masses are non-negative’: P(m) = 0 for m < 0

Non-linear parameter transformations do not leave prior invariant:

check whether this makes a large difference!
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Non-informative prior
Fisher information matrix for likelihood L(x; θ)

I(θ)i,j ≡ E
[(

∂

∂θi
log L(x; θ)

)(
∂

∂θj
log L(x; θ)

)∣∣∣∣ θ

]
= − E

[
∂2

∂θi∂θj
log L(x; θ)

]

can be numerically estimated as the Hessian matrix of the log-likelihood function near maximum

Jeffreys prior: non-informative, invariant under reparametrisation

p(θ) ∝
√

det I(θ)

if θ, φ two possible parametrisations of our problem, and θ(φ) is continuously differentiable, we want to
have

pθ(θ) = pφ(φ)
∣∣∣∣ ∂θ

∂φ

∣∣∣∣
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Example for Jeffreys prior (I)
Gaussian pdf with fixed σ, parameter of interest is the scale parameter µ:

f (x; µ) = 1√
2πσ2

e
− (x−µ)2

2σ2

p(µ) ∝
√

I(µ) =

√√√√E
[(

d

dµ
log f (x; µ)

)2
]

=

√√√√E
[(

x − µ

σ2

)2
]

=

√∫ +∞

−∞
f (x; µ)

(
x − µ

σ2

)2

dx =
√

σ2/σ4 ∝ 1

i.e. translation-invariant measure on the real numbers: all mean values equally likely
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Example for Jeffreys prior (II)
Gaussian pdf with fixed µ, parameter of interest is the standard deviation parameter σ:

f (x; σ) = 1√
2πσ2

e
− (x−µ)2

2σ2

p(σ) ∝
√

I(σ) =

√√√√E
[(

d

dσ
log f (x; σ)

)2
]

=

√√√√E
[(

(x − µ)2 − σ2

σ3

)2
]

=
√
2/σ2 ∝

1

σ

Tools for physicists: Statistics | SoSe 2024 | 105



Hypothesis tests
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Hypotheses and tests
Hypothesis test

I Goal: draw conclusions from the data

I Statement about validity of a model

I Decide which of two competing models is more consistent with data

Simple hypothesis: no free parameters

I Examples: particle is a π; data follow Poissonian with mean 5

Composite hypothesis: contains free parameters

Null hypothesis H0 and alternative hypothesis H1

I H0 often the background-only hypothesis

(e.g. Standard Model only; no additional resonance; …)

I H1 often signal or signal+background hypothesis

Question: can H0 be rejected by data?

Test statistic t: (scalar) variable that is a function of the data alone, that can be used to test

hypothesis
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Critical region
Reject null hypothesis if value of t lies in critical region: t > tcut

Probability for H0 to be rejected while H0

is true:

∫ ∞

tcut

f (t|H0)dt = α
α: “size” or significance level of

test

Probability for H1 to be rejected even

though it is true:

∫ tcut

−∞
f (t|H1)dt = β 1− β: power of the test
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Type I and Type II errors

Statistics jargon, getting more and more common also in HEP

Type I error: Probability of rejecting null hypothesis H0 when it is actually true

also known as false discovery rate

Type II error: Probability to fail to reject null hypothesis H0 while it is actually false

also known as false exclusion rate
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p-value
p-value: probability to observe data set that is as consistent or worse with null hypothesis as the actual

observation

test statistic: q0

pdf for q0 under H0: f (q0|0)
critical region: large values of q0

q0,obs: observed value in data

p0 =
∫ ∞

q0,obs
f (q0|0)dq0

pdf for q0 under H0 frequently needs to be estimated with simulation

p-value is a random variable (contrast: significance level α fixed before measurement).

if p0 < α: reject H0

1− p0: confidence level of test
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p-value and significance

(a) 
_1_ e-x2/2

/ \'2n

p-value

I

1--- z ---1 X 

if p0 < α, then reject null hypothesis

Frequent convention in HEP:

for discovery, require p < 2.87× 10−7

for exclusion, require p < 0.05

translate p-value to significance Z via Standard

Normal pdf

p0 =
∫ ∞

Z

1√
2π

e−x2/2dx = 1− Φ(Z)

Z = Φ−1(1− p0)

Significance of 5 (1.64) s.d. corresponds to

p = 2.87× 10−7(0.05)

Tools for physicists: Statistics | SoSe 2024 | 111



Tools for physicists: Statistics | SoSe 2024 | 112



how can we objectively tell which model fits better?



Least squares: Goodness-of-fit

Minimum value of S in the least squares method is a measure of agreement between model and data:

Smin =
n

∑
i=1

(
yi − f (xi ;~̂θ)

σi

)2

Large value of Smin: can reject model.

If model is correct, then Smin for repeated experiments follows a χ2 distribution with ndf degrees of

freedom:

f (t; ndf) = tndf/2−1

2ndf/2Γ( ndf
2

)
e−t/2, t = χ2

min

with ndf = n −m = number of data points− number of fit parameters
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Least squares: Goodness-of-fit

Expectation value of χ2 distribution is ndf

á χ2 ≈ ndf indicates good fit

Consistency of a model with data is quantified with the p-value:

p =
+∞∫

Smin

f (t; ndf)dt

p-value: probability to get a χ2
min

at least as high as the observed one, if the model is correct.

p-value is not the probability that the model is correct!
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p-value for the straight line fit example
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p-value for the straight line fit example
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θ̂0 = 2.856± 0.181

Stat. uncertainty on fit parameter does not tell

us whether model is correct
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Side remark: quoting χ2 and ndf
Always remember to quote χ2 and ndf separately,

instead of just the ‘reduced χ2/ndf — there is a difference!

prob(15,10) = 0.132

prob(1500,1000) = 1.05× 10−22
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Goodness of fit for unbinned ML fits
In the case of unbinned ML fit, can bin data and model prediction into histogram and then perform χ2

test

Consider the likelihood ratio

λ = L(~n|~ν)
L(~n|~n) , ~ν = ~ν(~θ)

For multinomially (“M”, ntot fixed) and Poisson distributed data (“P”), one obtains for k bins

λM =
k

∏
i

(
νi
ni

)ni

, λP = entot−νtot
k

∏
i

(
νi
ni

)ni

Now consider test statistic

t ≡ −2 log λ
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Goodness of fit for unbinned ML fits
For multinomially distributed data, in the large sample limit

tM = −2 log λM = 2
k

∑
i=1

ni log ni

ν̂i

follows χ2 distribution for k −m − 1 degrees of freedom.

For Poisson distributed data,

tP = −2 log λP = 2
k

∑
i=1

(
ni log ni

ν̂i
+ ν̂i − ni

)

follows χ2 distribution for k −m degrees of freedom.

Tools for physicists: Statistics | SoSe 2024 | 120



Profile likelihood ratio:
hypothesis tests with nuisance parameters

Base significance test on the profile likelihood

λ(µ) = L(µ, ˆ̂θ)
L(µ̂, θ̂)

= maximised L for specified µ

globally maximised L

Likelihood ratio of point hypotheses gives optimum test

(Neyman-Pearson lemma).

Composite hypothesis: parameter µ is only fixed under H0, but not under H1.

Wilks’ theorem:

q0 = −2 log λ

asymptotically approaches chi-square distribution for k degrees of freedom, where k is the difference in

dimensionality of H1 and H0
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Profile likelihood ratio
Example: B mass fit from last time; 40 signal events, 1000 background events
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yields, shape parameter for background
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d) scan of L(nsig, θ̂) with nuisance parameters

fixed to values from global minimum

profile likelihood: L(nsig; ˆ̂θ)

Tools for physicists: Statistics | SoSe 2024 | 122



Profile likelihood ratio
Example: B mass fit from last time; 40 signal events, 1000 background events
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2∆ log L = 17.94

And therefore p-value for H0:

1.13927× 10−5, or significance for nsig 6= 0

Z =
√
2∆ log L = 4.2σ

(one degree of freedom!)
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Profile likelihood ratio
Example: B mass fit from last time; 40 signal events, 1000 background events
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n̂sig = 47± 12
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free in fit: two additional nuisance parameters

(that cannot really be determined when

nsig = 0).

p-value = 0.0697557

Z = 1.48 σ
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Look-elsewhere effect

A Swedish study in 1992 tried to determine whether or not power lines caused some kind of poor

health effects. The researchers surveyed everyone living within 300 meters of high-voltage power lines

over a 25-year period and looked for statistically significant increases in rates of over 800 ailments. The

study found that the incidence of childhood leukemia was four times higher among those that lived

closest to the power lines, and it spurred calls to action by the Swedish government. The problem with

the conclusion, however, was that they failed to compensate for the look-elsewhere effect; in any

collection of 800 random samples, it is likely that at least one will be at least 3 standard deviations

above the expected value, by chance alone. Subsequent studies failed to show any links between

power lines and childhood leukemia, neither in causation nor even in correlation.

https://en.wikipedia.org/wiki/Look-elsewhere_effect
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Look-elsewhere effect

In general, a p-value of 1/n is likely to occur after n tests.

Solution: apply ‘trials penalty’, or ‘trials factor’, i.e. make threshold more stringent for large n.

Not entirely trivial to choose trials factor: need to count effective number of ‘independent’ regions.

Suppose you look at a range of invariant masses large compared to the mass resolution, then

N ∼ ∆M/σM.

See e.g. Gross & Vitells, arXiv:1005.1891 [physics.data-an] for a recipe
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Look-elsewhere effect

Can make substantial change to claimed

significance:

for example ATLAS observation of an

enhancement around 750 GeV in γγ invariant

mass:

Local significance 3.9σ, corresponding to a

p-value of p = 9.6× 10−5,

i.e. roughly 1:10000

Global significance only 2.1σ, corresponding

to a p-value of p = 0.0357,
i.e. roughly 1:28
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ATLAS, JHEP 09 (2016) 001
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(Final) digression: p-value debate

In many fields (esp. social sciences, psychology, etc.), significant means p < 0.05

Relatively weak statistical standard, but often not realised as such!

We’ve seen that getting p < 0.05 isn’t that rare, especially if you run many experiments!

May be a contributing factor to the ‘reproducibility crisis’

and may be exacerbated by p-value hacking
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5σ for discovery in particle physics?
5σ corresponds to p-value of 2.87× 10−7 (one-sided test)

History: many cases where 3σ and 4σ effects have disappeared with more data

Look-elsewhere effect

Systematics: often difficult to quantify / estimate

Subconscious Bayes factor:

I physicists tend to (subconsciously) assess Bayesian probabilities p(H1|data) and p(H0|data)
I If H1 involves something very unexpected (e.g. superluminal neutrinos), then prior probability for H0 is

much larger than for H1

I Extraordinary claims require extraordinary evidence

May be unreasonable to have single criterion for all experiments

Louis Lyons, Statistical issues in searches for new physics, arXiv:1409.1903
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p-value hacking http://xkcd.com/822
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Appendix
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Best Linear Unbiased Estimate (BLUE)

Have seen how to combine uncorrelated measurements.

Now consider n data points yi ,~y = (y1, . . . , yn) with covariance matrix V .

Calculate weighted average λ by minimising

χ2(λ) = (~y −~λ)TV−1(~y −~λ) ~λ = (λ, . . . , λ)

Result:

λ̂ = ∑
i

wiyi , with wi = ∑k(V−1)ik
∑k,l(V−1)kl

Variance:

σ2
λ̂

= ~wTV~w = ∑
i,j
wiVijwj

This is the best linear unbiased estimator, i.e. the linar unbiased estimator with the lowest variance
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BLUE
Special case: two correlated measurements

Consider two measurements y1, y2, with covariance matrix (ρ is correlation coefficient)

V =
(

σ21 ρσ1σ2
ρσ1σ2 σ22

)

Applying formulas from above:

V−1 = 1

1− ρ2

 1
σ2
1

−ρ
σ1σ2

−ρ
σ1σ2

1
σ2
2

 ; λ̂ = wy1 + (1−w)y2

w =
σ22 − ρσ1σ2

σ2
1

+ σ2
2

− 2ρσ1σ2
; V [λ̂] = σ2 =

(1− ρ2)σ21σ22
σ2
1

+ σ2
2

− 2ρσ1σ2
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Weighted average of correlated measurements:
interesting example

adapted from Cowan’s book and Scott Oser’s lecture:

Measure length of an object with two rulers. Both are calibrated to be accurate at temperature T = T0,

but otherwise have a temperature dependency: true length y is related to measured length L by

yi = Li + ci(T − T0)

Assume that we know ci and the (Gaussian) uncertainties. We measure L1, L2, and T , and want to

combine the measurements to get the best estimate of the true length.
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Weighted average of correlated measurements

Start by forming covariance matrix of the two measurements:

yi = Li + ci(T − T0); σ2i = σ2L + c2i σ2T

cov[y1, y2] = c1c2σ2T

Use the following parameter values, just for concreteness:

c1 = 0.1 L1 = 2.0± 0.1 y1 = 1.80± 0.22 T0 = 25

c2 = 0.2 L2 = 2.3± 0.1 y2 = 1.90± 0.41 T = 23± 2

With the formulas above, we obtain the following weighted average

y = 1.75± 0.19

Why doesn’t y lie between y1 and y2? Weird!
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Weighted average of correlated measurements

y1 and y2 were calculated assuming

T = 23

Fit adjusts temperature and finds best

agreement at T̂ = 22

Temperature is a nuisance parameter in

this case

Here, data themselves provide

information about nuisance parameter
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Addendum: Linear least squares (I)
Fit model: y = θ1x + θ0
Apply general solution developed for linear least squares fit:

Ai,j = aj(xi)
L = (ATV−1A)−1ATV−1, ~̂θ = L~y

AT =
(

1 1 · · · 1

x1 x2 · · · xn

)
; V−1 =


1/σ21

1/σ22
. . .

1/σ2n


ATV−1 =

(
1/σ21 1/σ22 · · · 1/σ2n
x1/σ21 x2/σ22 · · · xn/σ2n

)

ATV−1A =
(

1/σ21 1/σ22 · · · 1/σ2n
x1/σ21 x2/σ22 · · · xn/σ2n

)
1 x1

1 x2

.

.

.
.
.
.

1 xn

 =
(

∑i 1/σ2i ∑i xi/σ2i
∑i xi/σ2i ∑i x

2
i /σ2i

)
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Addendum: Linear least squares (II)
2× 2 matrix easy to invert. Using shorthand notation [z] = ∑i z/σ2

i
:

(ATV−1A)−1 = 1

[1][x2] − [x][x]

(
[x2] −[x]
−[x] [1]

)

And therefore

L = (ATV−1A)−1ATV−1

= 1

[1][x2] − [x][x]

(
[x2] −[x]
−[x] [1]

)
·
(

1/σ21 1/σ22 · · · 1/σ2n
x1/σ21 x2/σ22 · · · xn/σ2n

)

= 1

[1][x2] − [x][x]

 [x2]
σ2
1

− [x]x1
σ2
1

· · · [x2]
σ2
n

− [x]xn
σ2
n

−[x]
σ2
1

+ [1]x1
σ2
1

· · · −[x]
σ2
n

+ [1]xn
σ2
n


And finally:

θ̂0 = [x2][y] − [x][xy]
[1][x2] − [x][x]

, θ̂1 = −[x][y] + [1][xy]
[1][x2] − [x][x]
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