
Lustre file systems

A brief introduction
Patrick Keller

Peter-Bernd Otte
8.3.2024

Definition File System

• file system (FS): data structure that controls how data is stored and
retrieved. (Wikipedia)

• without a file system, data placed:
• would be one large body of data,
• no way to tell where one piece of data stopped and the next began,
• or where – when retrieving - any piece of data was located

• layered approach
• logical file system
• virtual file system (VFS)
• physical file system

logical file system

virtual file system

physical file system

Logical file system (LFS)

• LFS represents Physical FS
• logical file represents one or multiple physical files
• Logical files have no data. They have a description of the

records found in one or multiple physical files.

• usually syscalls in Linux:
open, read, write, close, lseek, stat, …

• same interface in userspace,
different mechanisms in the lower layers

logical file system

Virtual file system (VFS)

• FUSE: Filesystem in Userspace
• Interface to VFS in Linux

• kernel module as an interface to userspace
• users can mount Filesystems directly

• NTFS-3G: Windows file systems under Linux
• SSHFS
• CVM-FS

virtual file system

VFS concepts: inode

• „Everything after a backslash is an inode“
/directory/file

• inode contains metadata:
• type
• uid, gid
• permissions
• timestamps (atime, mtime, ctime)
• file size
• number of blocks and block pointers for actual data

VFS concepts: dentry/dcache

• directory entry (dentry)
• Pathname to a file or a directory
• /some/directory/file.out

• dentries usually have pointers to an inode object
• addresses on block devices
• memory for pseudo filesystems (e.g. /tmp)

• caching mechanism: “dcache”
• in RAM
• RAM limited à not all dentries included

Reading data
from
/directory/file

within the VFS
layer
in a classical
file system

Lookup dentry for ‚directory‘

Lookup file list for ‚directory‘

Lookup inode for ‚file‘ in
‚directory‘

Lookup block number and
block address for data in ‚file‘

Access block device at the
addresses

Parallel File Systems

Parallel file system

• layer concept is not applicable to distributed file systems,
because:

• parallel access (several clients)
• parallel storage (multiple servers)
• multiple servers with multiple disks store data

Parallel file system – Pros / Cons

+

• better performance
(load distribution)

• scalability
(in performance and
volume)

• redundancy

-

• overhead
• locking
• complex
• (unintuitive)

Parallel file system - Examples

• Lustre (Opensource / DDN)

• GPFS (IBM)

• BeeGFS

Lustre Design: Object Storage

• data is:
• stored within objects (not within files)
• data is referenced by objectids and pointers

• striping:
• files can be composed of multiple objects

OST0 OST1 OST2

Lustre design: Components

•Central configuration, mounting on clients,
locking

Management
server/target
(MGS/MGT)

•Translates files/directories to object ids
•Takes care of metadata information that is

usually placed in an inode

Metadata
server/target
(MDS/MDT)

•Stores object data on medium
•Data transfer to clients

Object storage
server/target

(OSS/OST)

add if
required

Lustre design: Architecture

Management
server/target
(MGS/MGT)

Metadata
server/target
(MDS/MDT)

Object storage
server/target

(OSS/OST)

Physical storage in Lustre

• object based data is stored on „classical filesystems“:
• ldiskfs (lustre disk filesystem)
• ZFS (Zettabyte File System)

Example: Reading bulk data from Lustre

• User:
cat /my/file

• Lustre client:
• checks access rights for user at the MDS
• gets objectids for file from the MDS
• read objects from the respective OSTs

Example:

$ lfs getstripe testfile

testfile

lmm_stripe_count: 1

lmm_stripe_size: 1048576

lmm_pattern: raid0

lmm_layout_gen: 0

lmm_stripe_offset: 40

obdidx objid objid group

40 39776410 0x25ef09a 0

Example:
$ lfs getstripe testfile
testfile
lmm_stripe_count: 4
lmm_stripe_size: 1048576
lmm_pattern: raid0
lmm_layout_gen: 0
lmm_stripe_offset: 3

obdidx objid objid group
3 110792105 0x69a8da9 0

20 107618569 0x66a2109 0
33 47100903 0x2ceb3e7 0
15 107404529 0x666dcf1 0

4GB testfile, default stripe layout
lcme_id: 2

lcme_mirror_id: 0

lcme_flags: init

lcme_extent.e_start: 1073741824

lcme_extent.e_end: EOF

lmm_stripe_count: 4

lmm_stripe_size: 1048576

lmm_pattern: raid0

lmm_layout_gen: 0

lmm_stripe_offset: 9

lmm_objects:

- 0: { l_ost_idx: 9, l_fid:
[0x100090000:0x5e38725:0x0] }

- 1: { l_ost_idx: 33, l_fid:
[0x100210000:0x1ca7418:0x0] }

- 2: { l_ost_idx: 27, l_fid:
[0x1001b0000:0x6453a4e:0x0] }

- 3: { l_ost_idx: 11, l_fid:
[0x1000b0000:0x5d1b9ea:0x0] }

$ lfs getstripe testfile
testfile
 lcm_layout_gen: 3
 lcm_mirror_count: 1
 lcm_entry_count: 2
 lcme_id: 1
 lcme_mirror_id: 0
 lcme_flags: init
 lcme_extent.e_start: 0
 lcme_extent.e_end: 1073741824
 lmm_stripe_count: 1
 lmm_stripe_size: 1048576
 lmm_pattern: raid0
 lmm_layout_gen: 0
 lmm_stripe_offset: 21
 lmm_objects:
 - 0: { l_ost_idx: 21, l_fid:
[0x100150000:0x5bc4615:0x0] }

Best practice

In Short: minimize meta data requests and read continuously.

Best practice 1/2

User behaviour resulting in slow Lustre:
• file size NOT on MDT
• getting the file size involves requests to all associated objects

about their size
• listing a directory (eg ls -als) does this for every file
• one OST unavailable à process hangs

Best practice 2/2

• Solution:
• Use of ls without parameters (check for aliases!)
• lazystatfs: inaccurate file size saved on MDT

• extended attributes
• still saved on OSTs (also with “lazy file size” parameter)
• are read from OSTs
• avoid requests

• Data on metadata

activated per default

Overview Mogon2 / Himster 2 File Servers

• /project 10 OSS, 44 OSTs, 5.4 PB
• /atlas 8 OSS, 24 OSTs, 2.2 PB
• /scratch 4 OSS, 12 OSTs, 1.1 PB
• /miifs04 4 OSS, 16 OSTs, 2.5 PB
• /miifs05 2 OSS, 8 OSTs, 0.75 PB
• Each OST consists of 14+1 disks in a ZFS raidz2

New:
• /”mogon3_lustre” 40 OST, 18.5 PB

• replacement for /miifs04 and /miifs05, 6-8TB useable
• under construction

Hands on

• 4 examples with different IO patterns
• IO analysis with Darshan

• What to do:
• login to MOGON 2 / Himster 2
• go to /lustre/project/m2_himkurs
• read README
• Try to identify the problem behaviour in each example

• Don’t hesitate to ask for help

Solutions and discussion

Example A

• Straightforward blockwise IO
• 36 seconds vs 63 seconds (results vary! do statistics?)
• 1M vs 4k blocksize

Lesson learned
à Small reads cause a lot of overhead
à Try to increase the write size to ~1MB when possible

Example B

• 10000 writes to the same file
• B_0 opens the file, writes to it, closes it
• B_1 keeps the file open between writes
• ~40x faster
• Only one client involved, even worse if locking needs to be

managed between clients

Lesson learned
à Economically use open/close at all times

Example C

• 1M 4k reads
• Both read from start to end
• C_0 has gaps in between
• C_1 reads continuously

Lesson learned
à No read ahead mechanism
à Every lseek causes another IO operation in Lustre, no streaming IO
à Try to read continuously when possible

Example D

• 50000 4k writes to the same file
• file is overwritten each time

• D_0 opens the file every time and truncates it (O_TRUNC)
• D_1 writes a buffer, resets the pointer to the start and writes the buffer again
• D_0 ~560x slower, due to open/close (compare with example B)
• O_TRUNC syncs files on Lustre (blocks until the changes are committed to disk)

Lessons learned
à Avoid O_TRUNC whenever possible
à use /localscratch if you need to constantly overwrite data

