Lustre file systems

A brief introduction

Patrick Keller
Peter-Bernd Otte
8.3.2024

Definition File System

. file system (FS): data structure that controls how data is stored and
retrieved. (Wikipedia)
. without a file system, data placed:

. would be one large body of data,
. no way to tell where one piece of data stopped and the next began,
. or where —when retrieving - any piece of data was located
* layered approach logical file system
. logical file system
. virtual file system (VFS) virtual file system
. physical file system

physical file system

Logical file system (LFS)

* LFSrepresents Physical FS
. logical file represents one or multiple physical files

. Logical files have no data. They have a description of the
records found in one or multiple physical files.

. usually syscalls in Linux:
open, read, write, close, lseek, stat,

. same interface in userspace,
different mechanisms in the lower layers

Virtual file system (VFS)

* FUSE: Filesystem in Userspace
. Interface to VFS in Linux

 kernel module as an interface to userspace

* users can mount Filesystems directly
* NTFS-3G: Windows file systems under Linux
* SSHFS
* CVM-FS

VFS concepts: inode

. »Everything after a backslash is an inode“
/directory/file

. inode contains metadata:

. type
. uid, gid
. permissions

. timestamps (atime, mtime, ctime)
. file size
. number of blocks and block pointers for actual data

VFS concepts: dentry/dcache

e directory entry (dentry)
. Pathname to a file or a directory
e /some/directory/file.out
* dentries usually have pointers to an inode object
* addresses on block devices
* memory for pseudo filesystems (e.g. /tmp)

* caching mechanism: “dcache”
. in RAM
. RAM limited = not all dentries included

i
Reading data
/directory/file

Within the VFS Lookup inode for ,file‘ in

,directory’
layer
Lookup block number and

In a ClaSSical block address for data in ,file*

file system _
Access block device at the

Parallel File Systems

Parallel file system

. layer conceptis not applicable to distributed file systems,
because:

. parallel access (several clients)
. parallel storage (multiple servers)
. multiple servers with multiple disks store data

Parallel file system — Pros / Cons

+ -
. better performance * overhead
(load distribution) * locking
* Scalablllty . Compl_ex
(in performance and T
volume) * (unintuitive)
. redundancy

Parallel file system - Examples

Lustre (Opensource / DDN)

GPFS (IBM)

BeeGFS

Lustre Design: Object Storage

e datais:
* stored within objects (not within files)
 dataisreferenced by objectids and pointers

e striping:
* files can be composed of multiple objects

OSTO0 OST1 0OST2

Lustre design: Components

Management Contral confiaurati ; '
o
server/target [oinkirr\ag configuration, mounting on clients,
(MGS/MGT)
Metadata eTranslates files/directories to object ids
server/target eTakes care of metadata information that is
(MDS/MDT) usually placed in an inode .
add if
ject stor i
Obje storage eStores object data on medium req ul red
server/ta rget eData transfer to clients
(OSS/OST)

Lustre design: Architecture

Management Metadata DNE Metadata Object Storage Object Storage
Target (MGT) Target (MDTO) Targets (MDT/ - MDTj) Targets (OSTs) Targets (OSTs)

| | 1 1 !
| I L} 1

Management [y . S S ©S &

N — \— —
N
server/target — = = =

(MGS/MGT)

- =

Metadata Object storage

- il
Managemert. | otedeta end server/target server/target

(MDS/MDT) (OSS/OST)

!-;;h Performance Data Network I I I | o
(Omni-Path, InfiniBand, 10/40/100GbE)

‘o (oo (oo (o

OO OO OOOm oo

o ‘m o g

OO oo OO Oooa

Lustre Clients (1 — 100,000+)

Physical storage in Lustre

* object based datais stored on ,,classical filesystems*“:
* ldiskfs (lustre disk filesystem)
* ZFS (Zettabyte File System)

Example: Reading bulk data from Lustre

 User:
cat /my/file

* Lustre client:
* checks accessrights for user at the MDS
* gets objectids for file from the MDS
* read objects from the respective OSTs

Example:

$ 1lfs getstripe testfile
testfile

Imm stripe count: 1
Ilmm stripe size: 1048576
Imm pattern: raido0
Imm layout gen: 0
Imm stripe offset: 40
obdidx objid
40 39776410

objid
0x25ef09%a

group

Example:

$ 1lfs getstripe testfile

testfile

Ilmm stripe count: 4

Ilmm stripe size: 1048576

Imm pattern: raido0

Imm layout gen: 0

Imm stripe offset: 3

obdidx objid objid group
3 110792105 0x69a8da’

20 107618569 0x66a22109
33 47100903 Ox2ceb3e’7
15 107404529 Ox666dcfl

o O O O

4GB testfile, default stripe layout

$ 1fs getstripe testfile
testfile

lcm layout gen: 3

lcm mirror count: 1

lcm entry count: 2
lcme_id:

lcme mirror_id:

lcme flags:

lcme_extent.e start:

lcme:extent . e:end:
lmm_stripe_count:
lmm_stripe_size:
lmm_pattern:
lmm layout gen:
lmm:stripe:offset:
lmm_objects:

1

0

init

0
1073741824
1

1048576
raid0

0

21

- 0: { 1 ost idx: 21, 1 fid:
[0x100150000:0x5bc4615:0x0] }

lcme_id:

lcme mirror id:

lcme_flags:
lcme_extent.e_start: 1073741824

2
0

init

lcme_extent.e_end: EOF
lmm_stripe count: 4
lmm_stripe size: 1048576
lmm_pattern: raid0
Imm_layout gen: 0

lmm_stripe offset: 9

1mm_obj
- 0: {
[0x100090000:
- 1: {
[0x100210000:
- 2: |
[0x1001b0000:

- 3: {
[0x1000b0000:

ects:

1 ost idx: 9, 1 fid:
0x5e38725:0x0] T

1 ost idx: 33, 1 fid:
0x1ca7418:0x0] }—

1 ost idx: 27, 1 fid:
0x6453a4e:0x0] }—

1 ost idx: 11, 1 fid:
0x5d1b9%ea:0x0] }—

Best practice

In Short: minimize meta data requests and read continuously.

Managemer Metadata ~ DNEMetadata ~ Object Storage Obyect Stor:
wget (MGT) Target (MOTO) get 1D’ MOT) jets (OSTs) Targets (OSTs)
r L 1 r L 1 L 1
§isccasaasesssad T & © ©S &
S S &S —_— e = =
S = — = — s = =
[Em}-cm) [Eml-Eeml): il:l:l:i}—u:."m - {cm|
[[-
............... nd Adtional |0\m|sv Object Storage
Newon " | Mansgumant | | etaana Sonirs o
o o
NNNNNNNNNNNNNNNN ok I J
(O o oiion, 1540300G0E) |
| (| (| (o)
Ooon (oo (oo (oxm
OOn oo (oo (o
oon| oo |oom| (oom
Lustre Clients (1 - 100,000+)

Best practice 1/2

User behaviour resulting in slow Lustre:
* file size NOT on MDT

* getting the file size involves requests to all associated objects
about their size

* listing adirectory (eg 1s —als)does this for every file
* one OST unavailable - process hangs

Best practice 2/2

e Solution:
. Use of 1s without parameters (check for aliases!)
. lazystatfs:inaccurate file size saved on MDT

activated per default

* extended attributes
. still saved on OSTs (also with “lazy file size” parameter)
. are read from OSTs
. avoid requests

e Dataon metadata

Overview Mogon2 / Himster 2 File Servers

. /project 10 OSS, 44 OSTs, 5.4 PB
e J/atlas 8 0SS, 24 OSTs, 2.2 PB
e /scratch 4 0SS, 12 OSTs, 1.1 PB
* /miifs04 4 0SS, 16 OSTs, 2.5 PB
e /miifs05 2 0SS, 8 OSTs, 0.75 PB

. Each OST consists of 14+1 disks in a ZFS raidz2

New:
. /”mogon3_lustre” 40 OST, 18.5 PB

. replacement for /miifs04 and /miifs05, 6-8TB useable
. under construction

Hands on

* 4 examples with different |0 patterns
IO analysis with Darshan

What to do:

. login to MOGON 2 / Himster 2

. goto /lustre/project/m2 himkurs

. read README

. Try to identify the problem behaviour in each example

* Don’t hesitate to ask for help

Solutions and discussion

Example A

» Straightforward blockwise 10
« 36 secondsvs 63 seconds (results vary! do statistics?)
* 1Myvs 4k blocksize

Lesson learned
- Smallreads cause a lot of overhead
- Trytoincrease the write size to ~1MB when possible

Example B

* 10000 writes to the same file

* B_0opensthefile, writes to it, closes it
* B_1 keeps the file open between writes
* ~40x faster

* Onlyone clientinvolved, even worse if locking needs to be
managed between clients

Lesson learned
- Economically use open/close at all times

Example C

* 1Mdkreads
* Bothread from start to end

« C_Ohasgapsinbetween Hil B i
« C_1reads continuously HEE T

Lesson learned

- Noread ahead mechanism

- Every lseek causes another IO operation in Lustre, no streaming IO
- Tryto read continuously when possible

Example D

50000 4k writes to the same file
. file is overwritten each time

. D_0 opens the file every time and truncates it (O_TRUNC)

. D_1 writes a buffer, resets the pointer to the start and writes the buffer again

. D_0 ~560x slower, due to open/close (compare with example B)

. O_TRUNC syncs files on Lustre (blocks until the changes are committed to disk)

Lessons learned
- Avoid O_TRUNC whenever possible
- use /localscratch if you need to constantly overwrite data

