Accurately obtaining muonic hydrogen hyperfine splitting from the electronic result

Carl E. Carlson William & Mary μASTI 2024 Zürich, 14-15 June 2024

Proceeding from submitted work with D. Ruth, K. Slifer, J.-P. Chen, F. Hagelstein, V. Pascalutsa, A. Deur, S. Kuhn, M. Ripani, X. Zheng, R. Zielinski, & C. Gu, and ancient papers with Nazaryan & Griffioen, PRL 2006, CJP 2007, LNP 2008, PRA 2008, 2011

Goals of this talk

- Present "stand-alone" calculation of HFS for ℓH , $\ell = \mu$ or e. New data, allows great improvement over earlier results. This work is finished and submitted.
- Explain using measured *eH* HFS with some scaling and corrections leads for significant reduction is uncertainty limits for *µH* HFS.
 Results not checked: will indicate uncertainty limits but not central values.

New input data

- For our calculation, input data includes the spindependent proton structure functions g_1 and g_2 , measured in polarized inelastic ep scattering
- Functions of W (total CM ep energy) and Q^2 (photon off-shell mass).
- Previously, no g_2 data at all. Now g2p JLab experiment 84 data points, at 4 different Q^2 (Ruth et al., 2022)
- And wonderfully extended set of g_1 data from JLab EG4. 1085 data points, at 25 values of Q^2 , range $\approx [0.01, 1.0] \text{ GeV}^2$ (Zheng et al., 2021)

For information, the old data

- No old data at all for g₂.
 Wilczek-Wandzura relation could give part of g₂ and there were data fits (!)
- JLab EG1b g_1 data, available in 2005 1124 data points at 27 values of Q^2 range $\approx [0.05, 5.0] \text{ GeV}^2$ (publication Fersch et al., 2017)
- SLAC E155 g_1 data, 24 data points, $Q^2 > 1.2 \text{ GeV}^2$ (Anthony et al., 2000)
- Actual data for g_2 and good lower $Q^2 g_1$ data creates opportunity for much improved calculational result

New planned experiments

- CREMA, FAMU, & JPARC propose measurement of HFS in ground state μH
- 1S μ H splitting is about 182.636 meV or wavelength \approx 6.8 μ m (infrared) or frequency \approx 44.2 THz
- Worry about time to run experiment: Have laser, frequency width ≈ 100 MHz
- Say spread of prediction is about 0.16 meV (can do better!)
 → spread of frequency prediction is ≈ 40 GHz
 → need ≈ 400 frequency settings of laser to scan HFS region.

Planned experiments run time

- From talks: need 1.4 hour to get 4σ signal above background, and 1 hour to change laser frequency.
- 2.4 hours \times 400 = 960 hours \approx 8 weeks (@ 5 days/week) Ugh: other groups want the PSI (CREMA's location) also
- .:. want good theoretical help to reduce the laser scan width
- Anticipate fractional experimental uncertainty upon completion better than 100 MHz/44.2 THz \approx 2 ppm
- Current best µH HFS splitting measurement is from CREMA (Science, 2013) and is 22.8089 (51) meV for the 2S state, or ≈ 220 ppm.
- For comparison, $E_{1S,HFS}(eH) = h \times 1420.405751768(2) \text{ MHz} \text{ or } 1.4 \text{ ppt}$

The calculation: lowest order

 H-atom, S-state, spin-dependent splitting UG textbook calculation!

Get
$$E_F^p = \frac{8\pi}{3} \frac{\mu_B \mu_p}{a_B^3} = \frac{8\pi}{3} (m_r \alpha)^3 \mu_B \mu_p$$

- $\mu_B = e/(2m_\ell)$ Bohr magneton $\mu_p = (1 + \kappa_p) e/(2m_p)$ exact magnetic moment for proton
- "Fermi energy"; Can evaluate to about 10-figure accuracy

Alternate writings,
$$E_F^p = \frac{8\alpha^4}{3} \frac{m_\ell^2 (1+\kappa_p)}{m_p (1+m_\ell/m_p)^3} = \frac{16\alpha^2}{3} \frac{\mu_p}{\mu_B} \frac{R_\infty}{(1+m_\ell/m_p)^3}$$

Next need corrections

- Write as $E_{HFS}^{p} = E_{F}^{p} \left(1 + \Delta_{QED} + \Delta_{S} + \text{some smaller corrections} \right)$
- · Δ_{QED} well calculated
- "some smaller corrections" won't be discussed
- Δ_S = structure dependent corrections,

here meaning corrections from $2-\gamma$ exchange,

Conventionally separate as

$$\Delta_S = \Delta_Z + \Delta_R$$

NR elastic "Zemach" Rel. elastic Corrections

+

 Δ_{pol}

Polarizability corrections

2y corrections

 Not calculable *ab initio*.
 But lower part is forward Compton scattering of off-shell photons, algebraically gotten from

$$T_{\mu\nu}(q,p,S) = \frac{i}{2\pi m_p} \int d^4\xi \ e^{iq\cdot\xi} \langle pS | Tj_{\mu}(\xi)j_{\nu}(0) | pS \rangle$$

Spin dependence is in the antisymmetric part $T_{\mu\nu}^{A} = \frac{i}{m_{p}} \epsilon_{\mu\nu\alpha\beta} q^{\alpha} \left[H_{1}(\nu, Q^{2}) S^{\beta} + H_{2}(\nu, Q^{2}) \frac{p \cdot q S^{\beta} - S \cdot q p^{\beta}}{p \cdot q} \right]$

Some use
$$S_{1,2} = 4\pi^2 \alpha H_{1,2}$$

- Imaginary part of above is related to polarized inelastic *ep* scattering, with Im $H_1(\nu, Q^2) = \frac{1}{\nu} g_1(\nu, Q^2)$ and Im $H_2(\nu, Q^2) = \frac{m_p}{\nu^2} g_2(\nu, Q^2)$
- Emphasize: g_1 and g_2 are measured at SLAC, HERMES, JLab,...

2γ corrections

• Combine electron part of diagram with Compton bottom, and energy from 2γ exchange

$$\begin{split} \Delta_{\text{pol}} &= \frac{E_{2\gamma}}{E_F} \bigg|_{\text{inel}} = \frac{2\alpha m_e}{(1+\kappa_p)\pi^3 m_p} \\ &\times \int \frac{d^4 Q}{(Q^4 + 4m_e^2 Q_0^2)Q^2} \left\{ (2Q^2 + Q_0^2) H_1^{\text{inel}}(iQ_0, Q^2) - 3Q^2 Q_0^2 H_2^{\text{inel}}(iQ_0, Q^2) \right\} \end{split}$$

- (Wick rotated). Great, but don't know $H_{1,2}$ from data.
- But do know Im parts, and if no subtraction, simple Cauchy (dispersion relation) gives

$$H_1^{\text{inel}}(\nu, Q^2) = \frac{1}{\pi} \int_{\nu_{th}^2}^{\infty} d\nu'^2 \, \frac{\text{Im} \, H_1(\nu', Q^2)}{\nu'^2 - \nu^2}$$

and similarly for H_2 .

Do some integrals analytically, getting

$$\begin{split} \Delta_{\text{pol}} &= \frac{\alpha m_{\ell}}{2(1+\kappa_p)\pi m_p} (\Delta_1 + \Delta_2) \\ \cdot & \Delta_1 = \int_0^\infty \frac{dQ^2}{Q^2} \left\{ \beta_1 \left(\frac{Q^2}{4m_{\ell}^2}\right) F_2^2(Q^2) + 4m_p \int_{\nu_{th}}^\infty \frac{d\nu}{\nu^2} \tilde{\beta}_1 \left(Q^2, \nu, m_{\ell}\right) g_1(\nu, Q^2) \right\} \end{split}$$

$$\Delta_2 = -12m_p \int_0^\infty \frac{dQ^2}{Q^2} \int_{\nu_{th}}^\infty \frac{d\nu}{\nu^2} \tilde{\beta}_2 \left(Q^2, \nu, m_{\ell}\right) g_2(\nu, Q^2)$$

$$. \quad \beta_1(\tau) = - \, 3\tau + 2\tau^2 + 2(2-\tau)\sqrt{\tau(\tau+1)}$$

٠

• $\tilde{\beta}_1$ and $\tilde{\beta}_2$ are known kinematic weighting functions.

Completion of Δ_1 calculation

- More comments on Δ_1 before going to g_2
- \exists noticeable contributions from outside the data region. Need model or fit to extrapolate. Have fit of Simula et al (PRD, 2002) and fit of Hall B collaboration (unpub., ca. 2016) and fit of E155 (PLB, 2000, high Q^2 , high W only).
- Hall B fits best where we have comparison data

Some fit comparisons

- Generally good agreement among the three fits in scaling region (high Q^2 , high W).
- Hall B closer in data region. (They did have EG1b data.)
- We use the Hall B fit for the fill-in contributions (higher W for Q^2 in data region, and Q^2 above and below data region).

$\Delta_1 \text{ results today}$

• $\Delta_1(eH) = 4.71 \pm 1.02$ from data + 1.60 ± ... high *W* fill-in, data region + 0.12 ± ... low Q^2 + 0.34 ± ... high Q^2

$$= 6.78 \pm 1.02_{data} \pm 0.23_{fill-in}$$

- Old $\Delta_1(eH) = 8.85 \pm 2.78$
- About -1 unit from newer data and about -1 from updated fill-in choice.

Modern Δ_2 , short version

- Thanks to g2p JLab experiment, have data where there was none before
- $\begin{array}{ll} \bullet & \Delta_2(eH) = -1.20_{\text{data}} \pm 0.16_{\text{data}} + \text{fill-in} \\ & = -1.98 \quad \pm 0.16_{\text{data}} \pm 0.38_{\text{fill-in}} \end{array}$
- Old $\Delta_2(eH) = -0.57 \pm 0.57$
- Big difference from having data.
- Wilczek-Wandzura close to old value, not to data.

 Δ_{pol} results

- Reminders: $\Delta_{\text{pol}} = \frac{\alpha m_{\ell}}{2(1+\kappa_p)\pi m_p} (\Delta_1 + \Delta_2)$ $E_{HFS}^p = E_F^p \left(1 + \Delta_{QED} + \Delta_Z + \Delta_R + \Delta_{\text{pol}} + \text{some smaller corrections}\right)$
- New results: $\Delta_{\text{pol}}(eH) = 1.09 \pm 0.31 \text{ ppm}$ $\Delta_{\text{pol}}(\mu H) = 200.6 \pm 52.4 \text{ ppm}$

Size of uncertainty

• $\Delta_{\text{pol}}(\mu H) = 200.6 \pm 52.4 \text{ ppm}$ (new)

•
$$\Delta_R = 931 \pm 3 \text{ ppm}$$

•
$$\Delta_Z = -7703 \pm 80 \text{ ppm}$$

(AMT, with range to AS and Kelly, from 2008)

- $E_F(\mu H) = 182.443 \text{ meV}$
- Uncertainties above give (Z-R-pol) 15, 1, 9 μ eV, resp. (or fractionally 8, small, 5, × 10⁻⁵)
- (Overall result given on previous slide)

More accurate µH results

- Bootstrap off super accurate eH results, $E_{1S-HFS}^{expt}(H) = 1\,420.405\,751\,768(2)\,MHz$
- Will refer to as "scaling + corrections"
- Due to Peset and Pineda and to Tomalak (2018) (Presentation here more like Tomalak)
- See also review by Antognini, Hagelstein, & Pascalutsa (2022) and Wednesday evening poster of Vladyslava Sharkovska.

What is it?

- Reminder $E_{HFS} = E_F \Big(1 + \underbrace{\Delta_{QED}}_{\text{will quote}} + \underbrace{\Delta_{\mu VP} + \Delta_{hVP} + \Delta_{Weak}}_{\text{known, same for }\mu H \text{ as for }eH} + \underbrace{\Delta_Z + \Delta_R + \Delta_{pol}}_{\Delta_S} \Big)$
- Can "reverse engineer" $\Delta_S(eH)$, to 7 figure accuracy, using E_{HFS}^{expt} and $E_F(eH)$.
- Need $\Delta_S(\mu H)$.

Tautology, & reworking

$$\Delta_{S}(\mu H) = \frac{m_{r\mu}}{m_{re}} \Delta_{S}(eH) + \left[\Delta_{S}(\mu H) - \frac{m_{r\mu}}{m_{re}} \Delta_{S}(eH) \right]$$

- Cannot be wrong! For "improved" Δ_S use $\Delta_S^{impr}(\mu H) = \frac{m_{r\mu}}{m_{re}} \Delta_S^{expt}(eH) + \left[\Delta_S(\mu H) - \frac{m_{r\mu}}{m_{re}} \Delta_S(eH) \right]$
- Scaling for first term, calculation for second, but treat the terms in square bracket as whole.

$$(m_{r\ell} = m_p m_{\ell} / (m_p + m_{\ell})$$
 is reduced mass)

Why this scaling?

The term as a whole is a correction

$$\Delta_{S}^{corr} = \Delta_{S}(\mu H) - \frac{m_{r\mu}}{m_{re}} \Delta_{S}(eH)$$

with a good deal of internal cancellation, both in the central value and in the uncertainty estimates.

• Zemach term is biggest term in Δ_S , and is proportional to the reduced mass

$$\Delta_Z = -2Z\alpha m_{r\ell}R_Z = \frac{8Z\alpha m_{r\ell}}{\pi} \int_0^\infty \frac{dQ}{Q^2} \left[\frac{G_E(Q^2)G_M(Q^2)}{1+\kappa_p} - 1 \right]$$

and cancels out of Δ^{corr}_S .

Use Δ_2^{corr} as further example

$$\Delta_{\text{pol}}^{corr} = \frac{\alpha m_{\ell}}{2\pi (1+\kappa_p)m_p} \left(\Delta_1^{corr} + \Delta_2^{corr}\right)$$

Note lepton mass factor, so that, e.g.,

$$\Delta_2^{corr} = \Delta_2(\mu H) - \frac{m_p + m_e}{m_p + m_\mu} \Delta_2(eH)$$

- For central values, easy: just subtract already calculated numbers
- Δ_1^{corr} significantly reduced compared to (say) $\Delta_1(\mu H)$
- Uncertainty limits requires some thought, but they are significantly reduced also

Uncertainty limits

• Central value, ab initio

$$\Delta_2(\ell H) = -24m_p^2 \int \frac{dQ^2}{Q^4} \int dx \,\tilde{\beta}_2(Q^2, x, m_\ell) g_2(x, Q^2)$$

(Weighting function $\tilde{\beta}_2$ known, $x=Q^2/(2m_p\nu).)$

$$\Delta_2^{corr} = -24m_p^2 \int \frac{dQ^2}{Q^4} \int dx \,\tilde{\beta}_2^{corr}(Q^2, x, m_\mu, m_e) g_2(x, Q^2)$$

with

٠

٠

$$\tilde{\beta}_2^{corr}(Q^2, x, m_\mu, m_e) = \tilde{\beta}_2(Q^2, x, m_\mu) - \frac{m_p + m_e}{m_p + m_\mu} \tilde{\beta}_2(Q^2, x, m_e)$$

• Lots of cancellation in $\tilde{\beta}_2^{corr}$.

Practical

• g_2 data at four values of Q^2 and set of W (initial state energy)

- First integral $B_2^{\text{corr}}(Q^2) = \int dx \,\tilde{\beta}_2^{\text{corr}}(Q^2, x, m_\mu, m_e) \,g_2(x, Q^2)$ $= \int \frac{dW}{J(W)} \,\tilde{\beta}_2^{\text{corr}}(Q^2, W, m_\mu, m_e) \,g_2(x, Q^2)$
- the W_i of the data are centers of bins with widths ΔW_i $B_2^{\text{corr}}(Q^2) = \sum_i \frac{\Delta W_i}{J(W_i)} \tilde{\beta}_2^{\text{corr}}(Q^2, W_i, m_\mu, m_e) g_2(W_i, Q^2)$

for uncertainties

- For central values, same as before
- For uncertainties, should add in quadrature. If δg_2 are uncertainties in data values,

$$\delta B_2^{\text{corr}}(Q^2) = \left\{ \sum_i \left[\frac{\Delta W_i}{J(W_i)} \, \tilde{\beta}_2^{\text{corr}}(Q^2, W, m_\mu, m_e) \, \delta g_2(W_i, Q^2) \right]^2 \right\}^{1/2}$$
(and likewise for next integral, the Q^2 integral)

(and likewise for next integral, the Q^2 integral)

• Some results: Δ_2 from g_2 data only $\Delta_{2,data}(eH) = -1.205 \pm 0.118$ $\Delta_{2,data}(\mu H) = -0.878 \pm 0.078$

 $\Delta_{2,data}^{corr} = 0.206 \pm 0.033$

Fill-in

- Need model or fit to get contributions to Δ_2 for Q^2 above and below data region, and for W above measured values in data region.
- Methods: a) Do Padé or other fit to B₂(Q²) from data region, and use extrapolation to get fill-in.
 b) Use model fits to get g₂(x, Q²) (and g₁(x, Q²)) everywhere, & use for fill-ins outside data region.
- Already mentioned the two models: Simula et al (2002) [based on good physics but only data was high Q^2 SLAC data for g_1] and "Hall-B fit" [from ca. 2016, had also EG1b JLab g_1 data].

Sample fill-in results for Δ_2

 Use Simula as example, and proceed as for real data: got for contribution above and below data region

$$\Delta_2(\mu H, \text{fill-in}) = -0.309 \pm 0.129$$

$$\Delta_2(eH, \text{fill-in}) = -0.473 \pm 0.180$$

$$\Delta_2^{corr}(\text{fill-in}) = 0.116 \pm 0.043$$

• Uncertainty reduced by factor ca. 4 (rel. to eH).

Modifications from existing work

• $\Delta_2(eH) = -1.98 \pm (0.16)_{data} \pm (0.38)_{model}$ $\Delta_2(\mu H) = -1.40 \pm (0.11)_{data} \pm (0.31)_{model}$

$$\Delta_2^{corr} = 0.38 \pm (0.06)_{data} \pm (0.10)_{model}$$

• $\Delta_1(eH) = 6.78 \pm (1.02)_{data} \pm (0.24)_{model}$ $\Delta_1(\mu H) = 5.69 \pm (0.84)_{data} \pm (0.20)_{model}$

$$\Delta_1^{corr} = -0.41 \pm (0.34)_{data} \pm (0.06)_{model}$$

•
$$\Delta_{pol}^{corr} = \frac{m_{\mu}\alpha}{2\pi(1+\kappa_p)m_p} \left(\Delta_1^{corr} + \Delta_2^{corr}\right) = -1.24 \pm 17.0 \text{ ppm}$$

• $\Delta_R^{corr} = -156.7 \pm 3.7 \text{ ppm}$

Results ...

$$\Delta_{S}^{impr}(\mu H) = \frac{m_{r\mu}}{m_{re}} \Delta_{S}^{expt}(eH) + \Delta_{R}^{corr} + \Delta_{pol}^{corr} = -157.9 \pm 17.4 \text{ ppm}$$

- Fermi energy $E_F(\mu H) = 182.443 \text{ meV}$
- Quoted uncertainty in $\Delta_S^{impr}(\mu H)$ leads to 0.003 meV uncertainty in $E_{HFS}^{1S}(\mu H)$ (or $\approx 2 \times 10^{-5}$ fractionally).

Summary

- For separate and uncoupled eH and μH calculations:
 - Dispersive calculation is complete, well defined, and unambiguous.
 - New data reduces uncertainty limits in calculated HFS by more than factor 2.
- Can do better for μH by getting some terms using experimental HFS data for eH
 - Reduces uncertainty limits by about another factor 3 (for μH only).
- Still "tension" with EFT calculation that requires resolution.

Beyond the end

Comments

- Early history: begun by Iddings (1965), finalized by Drell and Sullivan (1967), put in present notation by de Rafael (1971). No spin-dependent data existed, no nonzero evaluation for > 30 years, until Faustov and Martynenko (2002), then modern era starts
- Someone added something: the F_2^2 term. Not inelastic. (Put in here, taken out somewhere else.) Thought convenient in 1967, still here in 2024..
- Δ_1 term as written finite in $m_e \to 0$ limit, because of known sum rule, $4m_p \int_{\nu_{th}}^{\infty} \frac{d\nu}{\nu^2} g_1(\nu, 0) = -\kappa_p^2$ (DHGHY)

More fit comparisons

• Scaling region; near threshold W.

Unsubtracted dispersion relation (DR)?

- Was once openly discussed (< 2006, say), now seems generally thought o.k.
- DR comes from Cauchy integral formula applied with some contour (closed integration path)

$$H_{1}(\nu, Q^{2}) = \frac{1}{2\pi i} \oint \frac{H_{1}(\nu', Q^{2})}{{\nu'}^{2} - \nu^{2}} d\nu'^{2}$$

(DR in ν (or ν^{2}) with Q^{2} fixed)

- Work into $H_1(\nu, Q^2) = \frac{\operatorname{Res} H_1(\nu, Q^2)\Big|_{el}}{\nu_{el}^2 - \nu^2} + \frac{1}{\pi} \int_{cut} \frac{\operatorname{Im} H_1(\nu', Q^2)}{\nu'^2 - \nu^2} d\nu'^2 + \frac{1}{2\pi i} \int_{|\nu'| = \infty} \frac{H_1(\nu', Q^2)}{\nu'^2 - \nu^2} d\nu'^2$
- Drop the $|\nu| = \infty$ term. O.k. if H_1 falls at high ν .
- Can view as standard or as dramatic assumption.

H_1

• The elastic term can be worked out, sticking on-shell form factors at the γp vertices.

$$H_1^{el} = \frac{2m_p}{\pi} \left(\frac{Q^2 F_1(Q^2) G_M(Q^2)}{(Q^2 - i\epsilon)^2 - 4m_p^2 \nu^2} - \frac{F_2^2(Q^2)}{4m_p^2} \right)$$

- The second term does not fall with ν at fixed Q^2 .
- Unsubtracted DR fails for H_1^{el} alone. Overall success requires exact cancelation between elastic and inelastic contributions.

. (In case of interest:
$$H_2^{el} = -\frac{2m_p}{\pi} \frac{m_p \nu F_2(Q^2) G_M(Q^2)}{(Q^2 - i\epsilon)^2 - 4m_p^2 \nu^2}$$
.)

But then,

- Free quarks if there is at least one large momentum scale. So at high ν , Compton amplitude for proton should be sum of Compton amplitudes for free quarks, which have zero F_2 .
- Regge theory suggests H_1 must fall with ν . See Abarbanel and Nussinov (1967), who show $H_1 \sim \nu^{\alpha-1}$ with $\alpha < 1.*$
- Very similar DR derivation gives GDH sum rule, which is checked experimentally and works, within current experimental uncertainty.
- GDH sum rule also checked in LO and NLO order perturbation theory in QED. Appears to work.

Resolution?

- In modern times, authors who use experimental scattering data and DR to calculate the 2γ corrections assume an unsubtracted DR works for all of H_1 .
- Reevaluation always possible.
- Proceed to next topic, comparison of data driven evaluations of HFS to evaluations using B $\chi \rm PT$ to obtain $H_{1,2}$.
- See if subtraction comments come into play.

Side note: how good need we be?

- New measurements of HFS in μH in 1S state are planned.
- May measure to 0.1 ppm (as fraction of Fermi energy). But need theory prediction to help determine starting point of laser frequency scan.
- From 2018 conference at MITP (Mainz), want theory prediction to 25 ppm or better. Better is what we should look for.
- Believe state of art for HFS in 1S μH is from Antognini, Hagelstein, Pascalutsa (2022), $E_{\rm HFS}^{1S} = 182.634(8) \,{\rm meV}$

or 44 ppm.

Application of $B\chi PT$

 Using chiral perturbation theory, one can calculate beyond the elastic case diagrams like

• Or diagrams where there is a Δ -baryon on the hadronic leg,

• These can be used to calculate $H_{1,2}$, at low Q^2 and CM energy W not too far from threshold. Also can get $\gamma^*N \to \pi N$ or $\gamma^*N \to \Delta$ and from them obtain $g_{1,2}$ at similarly low kinematics.

g_1 comparison

• Compare g_1 from B χ PT (blue lines) to JLab data

- Plots are "unofficial": Made by me* and involve spreading Δ pole out using Lorentzian of same total area.
- O.k. This won't explain difference in Δ_{pol} results.

Another g_1 comparison

- green = proton contribution
- gold = Δ contribution
- blue = sum

•

Non-pole terms

• Non-pole means ν independent terms in $H_{1,2}$.

• Recall elastic
$$H_1^{el} = \frac{2m_p}{\pi} \left(\frac{Q^2 F_1(Q^2) G_M(Q^2)}{(Q^2 - i\epsilon)^2 - 4m_p^2 \nu^2} - \frac{F_2^2(Q^2)}{4m_p^2} \right).$$

- The B χ PT results for H_1 with π -N and Δ intermediate states also have non-pole terms.
- To calculate energies for the non-pole terms, cannot use the DR (at least not un-subtracted ones), but can use the expressions on slide 7, which were before any Cauchy trickery was used

Pole and non-pole

- $\begin{array}{lll} \bullet & \text{One part: The } \Delta \text{ contribution to } \mu H \, \text{HFS for 2S state}^* \\ & E_{pol}^{HFS} = \, 40.69 \, \mu \text{eV} & \text{pole} \\ & = & 39.54 \, \mu \text{eV} & \text{non-pole} \\ & = & & 1.15 \, \mu \text{eV} & \text{total} \end{array}$
- Lot of cancellation.
- But from asymptotic freedom, or from Regge analysis, or from success of DHG sum rule, expect zero non-pole term. Totality, from elastic and resonances and inelastic terms, needs to add to zero for the ν independent terms.
- Something to talk about.

One point

 How should one deal with non-zero non-pole terms that result from partial information, when one knows that the non-pole terms are zero when one has complete information?

 Δ_{pol} with newest $g_{1.2}$

- Defer to David Ruth (next after next talk).
- Except for comment on handling regions outside the data range.
- Mostly, because of the kinematic factors, the need is for data at low Q^2 and low ν (or *W* near threshold), and this is where the data is.
- Again, mostly, where there is no data and we use models or interpolations, the contributions to Δ_{1,2} are not great and the accruing uncertainty is not great.

 Δ_{pol} with newest $g_{1,2}$

- An exception may be the very low Q^2 region, where there is no data. For the 2003 data, this was $Q^2 < 0.0452$ GeV².
- And there may be a problem when comparing to χ PT.
- What we did: reminder

$$\Delta_1 = \frac{9}{4} \int_0^\infty \frac{dQ^2}{Q^2} \left\{ F_2^2(Q^2) + \frac{8m_p^2}{Q^2} B_1(Q^2) \right\}$$

with
$$B_1(Q^2) = \frac{4}{9} \int_0^{x_{\rm th}} dx \,\beta_1(\tau) g_1(x, Q^2)$$
.

• For very low Q^2 we used $B_1(Q^2) = -\frac{\kappa_p^2}{8m_p^2}Q^2 + c_{1B}Q^4 = -\frac{\kappa_p^2}{8m_p^2}Q^2 + 4.94 Q^4/\text{GeV}^4$ got by fitting to data $Q^2 < 0.3 \text{ GeV}^2$

 Δ_{pol} with newest $g_{1,2}$

- The region $Q^2 < 0.0492$ GeV² contributed about 15% of Δ_1 and (by our estimate) 30% of the uncertainty.
- Use standard expansion for the form factor, $F_2(Q^2) = \kappa_p \left(1 - \frac{1}{6}R_{Pauli}^2Q^2 + ...\right)$
- Get Integrand = $\frac{9}{4} \frac{1}{O^2} \left(F_2^2 + \frac{8m_p^2}{O^2} B_1 \right) = -\frac{3}{4} \kappa_p^2 R_{Pauli}^2 + 8m_p^2 c_{1B}$
- And $\Delta_1(0 \rightarrow Q^2_{low\,data}) \approx \text{Integrand} \cdot Q^2_{low\,data} \approx 1.35$

$$\Delta_{pol}$$
 with newest $g_{1,2}$

- χ PT has knowledge of g_1 at low Q^2 , and can do the integrals. Do good approximation by expanding the β_1 function for low Q^2 .
- Work for a while to get Integrand = $-\frac{3}{4}\kappa_p^2 R_{Pauli}^2 + 8m_p^2 c_1 - \frac{5m_p^2}{4\alpha}\gamma_0 + \mathcal{O}(Q^2),$

Where
$$\gamma_0 = \frac{2\alpha}{m_p^2} \int \frac{d\nu}{\nu^4} g_1(\nu, 0)$$

and c_1 came from
 $I(Q^2) \equiv 4m_p \int \frac{d\nu}{\nu^2} g_1(\nu, Q^2) = -\kappa_p^2 + c_1 Q^2 + \mathcal{O}(Q^4)$

 Δ_{pol} with newest $g_{1,2}$

• Value for known, and doing integrals to get c_1 , find $\Delta_1(0 \rightarrow Q_{low \, data}^2) \approx \text{Integrand} \cdot Q_{low \, data}^2 \approx -0.45$

thanks again to F. Haglestein et al.

- Not even same sign!
- Corresponding numbers for μ are $~\approx 0.86$ and -0.20

Remembering $\Delta_{pol} = \frac{\alpha m_{\mu}}{2(1 + \kappa_p)\pi m_p} (\Delta_1 + \Delta_2)$, difference gives about 50 ppm or about 15% of discrepancy.

More to talk about!