Accurately obtaining muonic

hydrogen hyperine splitting

 from the electronic result \square

Carl E. Carlson
William \& Mary
ASTI 2024
μ ASTI 2024
Zürich, 14-15 June 2024

Proceeding from submitted work whth D, Rithtikisilier, J.-P Chen, F. Hagelstein V. Pascalutsa, A. Deur, S. Kuhn, M. Ripani, X. Zheng, R. Zielinski, \& C. Cu, and ancient papers with Nazaryan \& Griffioen,-CRL 2006, C JP 2007 HNP 2008;

Goals of this talk

- Present "stand-alone" calculation of HFS for ℓH, $\ell=\mu$ or e. New data, allows great improvement over earlier results. This work is finished and submitted.
- Explain using measured $e H$ HFS with some scaling and corrections leads for significant reduction is uncertainty limits for μH HFS. Results not checked: will indicate uncertainty limits but not central values.

New input data

- For our calculation, input data includes the spindependent proton structure functions g_{1} and g_{2}, measured in polarized inelastic ep scattering
- Functions of W (total CM ep energy) and Q^{2} (photon offshell mass).
- Previously, no g_{2} data at all. Now g2p JLab experiment 84 data points, at 4 different $Q^{2} \quad$ (Ruth et al., 2022)
- And wonderfully extended set of g_{1} data from JLab EG4. 1085 data points, at 25 values of Q^{2}, range $\approx[0.01,1.0] \mathrm{GeV}^{2}$
(Zheng et al., 2021)

For information, the old data

- No old data at all for g_{2}. Wilczek-Wandzura relation could give part of g_{2} and there were data fits (!)
- JLab EG1b g_{1} data, available in 2005 1124 data points at 27 values of Q^{2}
range $\approx[0.05,5.0] \mathrm{GeV}^{2}$ (publication Fersch et al., 2017)
- SLAC E155 g_{1} data, 24 data points, $Q^{2}>1.2 \mathrm{GeV}^{2}$ (Anthony et al., 2000)
- Actual data for g_{2} and good lower $Q^{2} g_{1}$ data creates opportunity for much improved calculational result

New planned experiments

- CREMA, FAMU, \& JPARC propose measurement of HFS in ground state $\mu \mathrm{H}$
- $1 \mathrm{~S} \mu \mathrm{H}$ splitting is about 182.636 meV or wavelength $\approx 6.8 \mu \mathrm{~m}$ (infrared) or frequency $\approx 44.2 \mathrm{THz}$
- Worry about time to run experiment: Have laser, frequency width $\approx 100 \mathrm{MHz}$
- Say spread of prediction is about 0.16 meV (can do better!)
\rightarrow spread of frequency prediction is $\approx 40 \mathrm{GHz}$
\rightarrow need ≈ 400 frequency settings of laser to scan HFS region.

Planned experiments run time

- From talks: need 1.4 hour to get 4σ signal above background, and 1 hour to change laser frequency.
- 2.4 hours $\times 400=960$ hours ≈ 8 weeks (@ 5 days/week) Ugh: other groups want the PSI (CREMA's location) also
- \therefore want good theoretical help to reduce the laser scan width
- Anticipate fractional experimental uncertainty upon completion better than $100 \mathrm{MHz} / 44.2 \mathrm{THz} \approx 2 \mathrm{ppm}$
- Current best μH HFS splitting measurement is from CREMA (Science, 2013) and is 22.8089 (51) meV for the 2 S state, or $\approx 220 \mathrm{ppm}$.
- For comparison,

$$
E_{1 \mathrm{~S}, \mathrm{HFS}}(e H)=h \times 1420.405751768(2) \mathrm{MHz} \text { or } 1.4 \mathrm{ppt}
$$

The calculation: lowest order

- H-atom, S-state, spin-dependent splitting UG textbook calculation!

. Get $E_{F}^{p}=\frac{8 \pi}{3} \frac{\mu_{B} \mu_{p}}{a_{B}^{3}}=\frac{8 \pi}{3}\left(m_{r} \alpha\right)^{3} \mu_{B} \mu_{p}$
- $\mu_{B}=e /\left(2 m_{\ell}\right) \quad$ Bohr magneton
$\mu_{p}=\left(1+\kappa_{p}\right) e /\left(2 m_{p}\right) \quad$ exact magnetic moment for proton
- "Fermi energy" ; Can evaluate to about 10 -figure accuracy

Alternate writings, $E_{F}^{p}=\frac{8 \alpha^{4}}{3} \frac{m_{\ell}^{2}\left(1+\kappa_{p}\right)}{m_{p}\left(1+m_{\ell} / m_{p}\right)^{3}}=\frac{16 \alpha^{2}}{3} \frac{\mu_{p}}{\mu_{B}} \frac{R_{\infty}}{\left(1+m_{\ell} / m_{p}\right)^{3}}$

Next need corrections

- Write as

$$
E_{H F S}^{p}=E_{F}^{p}\left(1+\Delta_{Q E D}+\Delta_{S}+\text { some smaller corrections }\right)
$$

- $\Delta_{Q E D}$ well calculated
- "some smaller corrections" won't be discussed
- $\Delta_{S}=$ structure dependent corrections, here meaning corrections from 2- γ exchange,

- Conventionally separate as

$$
\Delta_{S}=\underset{\substack{\text { NR elastic } \\ \text { "Zemach" }}}{\Delta_{Z}}+\underset{\substack{\text { Rel. elastic } \\ \text { Corrections }}}{\Delta_{R}}+\underset{\substack{\text { Polarizability } \\ \text { corrections }}}{\Delta_{p o l}}
$$

2γ corrections

- Not calculable ab initio. But lower part is forward Compton scattering of off-shell photons, algebraically gotten from

$$
T_{\mu \nu}(q, p, S)=\frac{i}{2 \pi m_{p}} \int d^{4} \xi e^{i q \cdot \xi}\langle p S| T j_{\mu}(\xi) j_{\nu}(0)|p S\rangle
$$

- Spin dependence is in the antisymmetric part

$$
T_{\mu \nu}^{A}=\frac{i}{m_{p}} \epsilon_{\mu \nu \alpha \beta} q^{\alpha}\left[H_{1}\left(\nu, Q^{2}\right) S^{\beta}+H_{2}\left(\nu, Q^{2}\right) \frac{p \cdot q S^{\beta}-S \cdot q p^{\beta}}{p \cdot q}\right]
$$

- Imaginary part of above is related to polarized inelastic $e p$ scattering, with

$$
\operatorname{Im} H_{1}\left(\nu, Q^{2}\right)=\frac{1}{\nu} g_{1}\left(\nu, Q^{2}\right) \quad \text { and } \quad \operatorname{Im} H_{2}\left(\nu, Q^{2}\right)=\frac{m_{p}}{\nu^{2}} g_{2}\left(\nu, Q^{2}\right)
$$

- Emphasize: g_{1} and g_{2} are measured at SLAC, HERMES, JLab, \ldots

- Combine electron part of diagram with Compton bottom, and energy from 2γ exchange

$$
\begin{aligned}
& \Delta_{\mathrm{pol}}=\left.\frac{E_{2 \gamma}}{E_{F}}\right|_{\text {inel }}=\frac{2 \alpha m_{e}}{\left(1+\kappa_{p}\right) \pi^{3} m_{p}} \\
& \quad \times \int \frac{d^{4} Q}{\left(Q^{4}+4 m_{e}^{2} Q_{0}^{2}\right) Q^{2}}\left\{\left(2 Q^{2}+Q_{0}^{2}\right) H_{1}^{\text {inel }}\left(i Q_{0}, Q^{2}\right)-3 Q^{2} Q_{0}^{2} H_{2}^{\text {inel }}\left(i Q_{0}, Q^{2}\right)\right\}
\end{aligned}
$$

- (Wick rotated). Great, but don't know $H_{1,2}$ from data.
- But do know Im parts, and if no subtraction, simple Cauchy (dispersion relation) gives

$$
H_{1}^{\mathrm{inel}}\left(\nu, Q^{2}\right)=\frac{1}{\pi} \int_{\nu_{i h}^{2}}^{\infty} d \nu^{\prime 2} \frac{\operatorname{Im} H_{1}\left(\nu^{\prime}, Q^{2}\right)}{\nu^{\prime 2}-\nu^{2}}
$$

and similarly for H_{2}.

Do some integrals analytically, getting

$$
\begin{aligned}
& \Delta_{\mathrm{pol}}=\frac{\alpha m_{\ell}}{2\left(1+\kappa_{p}\right) \pi m_{p}}\left(\Delta_{1}+\Delta_{2}\right) \\
& \Delta_{1}=\int_{0}^{\infty} \frac{d Q^{2}}{Q^{2}}\left\{\beta_{1}\left(\frac{Q^{2}}{4 m_{\ell}^{2}}\right) F_{2}^{2}\left(Q^{2}\right)+4 m_{p} \int_{\nu_{t h}}^{\infty} \frac{d \nu}{\nu^{2}} \tilde{\beta}_{1}\left(Q^{2}, \nu, m_{\ell}\right) g_{1}\left(\nu, Q^{2}\right)\right\} \\
& . \quad \Delta_{2}=-12 m_{p} \int_{0}^{\infty} \frac{d Q^{2}}{Q^{2}} \int_{\nu_{\text {th }}}^{\infty} \frac{d \nu}{\nu^{2}} \tilde{\beta}_{2}\left(Q^{2}, \nu, m_{\ell}\right) g_{2}\left(\nu, Q^{2}\right) \\
& . \quad \beta_{1}(\tau)=-3 \tau+2 \tau^{2}+2(2-\tau) \sqrt{\tau(\tau+1)} \\
& . \quad \tilde{\beta}_{1} \text { and } \tilde{\beta}_{2} \text { are known kinematic weighting functions. }
\end{aligned}
$$

Completion of Δ_{1} calculation

- More comments on Δ_{1} before going to g_{2}
- \exists noticeable contributions from outside the data region. Need model or fit to extrapolate. Have fit of Simula et al (PRD, 2002) and fit of Hall B collaboration (unpub., ca. 2016) and fit of E155 (PLB, 2000, high Q^{2}, high W only).
- Hall B fits best where we have comparison data

Some fit comparisons

- Generally good agreement among the three fits in scaling region (high Q^{2}, high W).
- Hall B closer in data region. (They did have EG1b data.)
- We use the Hall B fit for the fill-in contributions (higher W for Q^{2} in data region, and Q^{2} above and below data region).

Δ_{1} results today

- $\Delta_{1}(e H)=4.71 \pm 1.02$ from data
$+1.60 \pm \ldots$ high W fill-in, data region
$+0.12 \pm \ldots$ low Q^{2}
$+0.34 \pm \ldots \quad$ high Q^{2}
$=6.78 \pm 1.02_{\text {data }} \pm 0.23_{\text {fill-in }}$
- Old $\Delta_{1}(e H)=8.85 \pm 2.78$
- About -1 unit from newer data and about-1 from updated fill-in choice.

Modern Δ_{2}, short version

- Thanks to g2p JLab experiment, have data where there was none before
- $\Delta_{2}(e H)=-1.20_{\text {data }} \pm 0.16_{\text {data }}+$ fill-in

$$
=-1.98 \quad \pm 0.16_{\text {data }} \pm 0.38_{\text {fill-in }}
$$

- Old $\Delta_{2}(e H)=-0.57 \pm 0.57$
- Big difference from having data.
- Wilczek-Wandzura close to old value, not to data.

$\Delta_{\text {pol }}$ results

. Reminders: $\Delta_{\text {pol }}=\frac{\alpha m_{\ell}}{2\left(1+\kappa_{p}\right) \pi m_{p}}\left(\Delta_{1}+\Delta_{2}\right)$

$$
E_{H F S}^{p}=E_{F}^{p}\left(1+\Delta_{Q E D}+\Delta_{Z}+\Delta_{R}+\Delta_{\text {pol }}+\text { some smaller corrections }\right)
$$

- New results: $\Delta_{\text {pol }}(e H)=1.09 \pm 0.31 \mathrm{ppm}$ $\Delta_{\text {pol }}(\mu H)=200.6 \pm 52.4 \mathrm{ppm}$

Size of uncertainty

- $\Delta_{\text {pol }}(\mu H)=200.6 \pm 52.4 \mathrm{ppm}$ (new)
- $\Delta_{R}=931 \pm 3 \mathrm{ppm}$
- $\Delta_{Z}=-7703 \pm 80 \mathrm{ppm}$
(AMT, with range to AS and Kelly, from 2008)
- $E_{F}(\mu H)=182.443 \mathrm{meV}$
- Uncertainties above give (Z-R-pol) 15, 1, $9 \mu \mathrm{eV}$, resp. (or fractionally 8 , small, $5, \times 10^{-5}$)
- (Overall result given on previous slide)

More accurate μH results

- Bootstrap off super accurate eH results, $E_{1 \text { S-HFS }}^{\text {expt }}(\mathrm{H})=1420.405751768(2) \mathrm{MHz}$
- Will refer to as "scaling + corrections"
- Due to Peset and Pineda and to Tomalak (2018) (Presentation here more like Tomalak)
- See also review by Antognini, Hagelstein, \& Pascalutsa (2022) and Wednesday evening poster of Vladyslava Sharkovska.

What is it?

- Reminder

$$
E_{H F S}=E_{F}(1+\underbrace{\Delta_{Q E D}}_{\text {will quote }}+\underbrace{\Delta_{\mu V P}+\Delta_{h V P}+\Delta_{W e a k}}_{\text {known, same for } \mu H \text { as for } e H}+\underbrace{\Delta_{Z}+\Delta_{R}+\Delta_{p o l}}_{\Delta_{S}})
$$

- Can "reverse engineer" $\Delta_{S}(e H)$, to 7 figure accuracy, using $E_{H F S}^{\text {expt }}$ and $E_{F}(e H)$.
- Need $\Delta_{S}(\mu H)$.

Tautology, \& reworking

$. \Delta_{S}(\mu H)=\frac{m_{r \mu}}{m_{r e}} \Delta_{S}(e H)+\left[\Delta_{S}(\mu H)-\frac{m_{r \mu}}{m_{r e}} \Delta_{S}(e H)\right]$

- Cannot be wrong! For "improved" Δ_{S} use

$$
\Delta_{S}^{i m p r}(\mu H)=\frac{m_{r \mu}}{m_{r e}} \Delta_{S}^{\text {expt }}(e H)+\left[\Delta_{S}(\mu H)-\frac{m_{r \mu}}{m_{r e}} \Delta_{S}(e H)\right]
$$

- Scaling for first term, calculation for second, but treat the terms in square bracket as whole.

$$
\left(m_{r \ell}=m_{p} m_{\ell} /\left(m_{p}+m_{\ell}\right) \text { is reduced mass }\right)
$$

Why this scaling?

- The term as a whole is a correction

$$
\Delta_{S}^{c o r r}=\Delta_{S}(\mu H)-\frac{m_{r \mu}}{m_{r e}} \Delta_{S}(e H)
$$

with a good deal of internal cancellation, both in the central value and in the uncertainty estimates.

- Zemach term is biggest term in Δ_{S}, and is proportional to the reduced mass $\Delta_{Z}=-2 Z \alpha m_{r e} R_{Z}=\frac{8 Z \alpha m_{r e}}{\pi} \int_{0}^{\infty} \frac{d Q}{Q^{2}}\left[\frac{G_{E}\left(Q^{2}\right) G_{M}\left(Q^{2}\right)}{1+\kappa_{p}}-1\right]$ and cancels out of $\Delta_{S}^{\text {corr }}$.

Use $\Delta_{2}^{\text {corr }}$ as further example

. $\Delta_{\mathrm{pol}}^{\text {corr }}=\frac{\alpha m_{\ell}}{2 \pi\left(1+\kappa_{p}\right) m_{p}}\left(\Delta_{1}^{\text {corr }}+\Delta_{2}^{\text {corr }}\right)$

- Note lepton mass factor, so that, e.g.,

$$
\Delta_{2}^{c o r r}=\Delta_{2}(\mu H)-\frac{m_{p}+m_{e}}{m_{p}+m_{\mu}} \Delta_{2}(e H)
$$

- For central values, easy: just subtract already calculated numbers
- $\Delta_{1}^{\text {corr }}$ significantly reduced compared to (say) $\Delta_{1}(\mu H)$
- Uncertainty limits requires some thought, but they are significantly reduced also

Uncertainty limits

- Central value, ab initio
. $\Delta_{2}(\ell H)=-24 m_{p}^{2} \int \frac{d Q^{2}}{Q^{4}} \int d x \tilde{\beta}_{2}\left(Q^{2}, x, m_{\ell}\right) g_{2}\left(x, Q^{2}\right)$
(Weighting function $\tilde{\beta}_{2}$ known, $x=Q^{2} /\left(2 m_{p} \nu\right)$.)
. $\Delta_{2}^{\text {corr }}=-24 m_{p}^{2} \int \frac{d Q^{2}}{Q^{4}} \int d x \tilde{\beta}_{2}^{\text {corr }}\left(Q^{2}, x, m_{\mu}, m_{e}\right) g_{2}\left(x, Q^{2}\right)$
with

$$
\tilde{\beta}_{2}^{c o r r}\left(Q^{2}, x, m_{\mu}, m_{e}\right)=\tilde{\beta}_{2}\left(Q^{2}, x, m_{\mu}\right)-\frac{m_{p}+m_{e}}{m_{p}+m_{\mu}} \tilde{\beta}_{2}\left(Q^{2}, x, m_{e}\right)
$$

- Lots of cancellation in $\tilde{\beta}_{2}^{\text {corr }}$.

Practical

- g_{2} data at four values of Q^{2} and set of W (initial state energy)

- First integral

$$
\begin{aligned}
B_{2}^{\mathrm{corr}}\left(Q^{2}\right) & =\int d x \tilde{\beta}_{2}^{\mathrm{corr}}\left(Q^{2}, x, m_{\mu}, m_{e}\right) g_{2}\left(x, Q^{2}\right) \\
& =\int \frac{d W}{J(W)} \tilde{\beta}_{2}^{\mathrm{corr}}\left(Q^{2}, W, m_{\mu}, m_{e}\right) g_{2}\left(x, Q^{2}\right)
\end{aligned}
$$

- the W_{i} of the data are centers of bins with widths ΔW_{i}

$$
B_{2}^{\mathrm{corr}}\left(Q^{2}\right)=\sum_{i} \frac{\Delta W_{i}}{J\left(W_{i}\right)} \tilde{\beta}_{2}^{\mathrm{corr}}\left(Q^{2}, W_{i}, m_{\mu}, m_{e}\right) g_{2}\left(W_{i}, Q^{2}\right)
$$

for uncertainties

- For central values, same as before
- For uncertainties, should add in quadrature. If δg_{2} are uncertainties in data values,
$\delta B_{2}^{\text {corr }}\left(Q^{2}\right)=\left\{\sum_{i}\left[\frac{\Delta W_{i}}{J\left(W_{i}\right)} \tilde{\beta}_{2}^{\text {corr }}\left(Q^{2}, W, m_{\mu}, m_{e}\right) \delta g_{2}\left(W_{i}, Q^{2}\right)\right]^{2}\right\}^{1 / 2}$
(and likewise for next integral, the Q^{2} integral)
- Some results: Δ_{2} from g_{2} data only
$\Delta_{2, \text { data }}(e H)=-1.205 \pm 0.118$
$\Delta_{2, \text { data }}(\mu H)=-0.878 \pm 0.078$
$\Delta_{2, \text { data }}^{\text {corr }}=0.206 \pm 0.033$

Fill-in

- Need model or fit to get contributions to Δ_{2} for Q^{2} above and below data region, and for W above measured values in data region.
- Methods: a) Do Padé or other fit to $B_{2}\left(Q^{2}\right)$ from data region, and use extrapolation to get fill-in.
b) Use model fits to get $g_{2}\left(x, Q^{2}\right)$ (and $g_{1}\left(x, Q^{2}\right)$) everywhere, \& use for fill-ins outside data region.
- Already mentioned the two models: Simula et al (2002) [based on good physics but only data was high Q^{2} SLAC data for g_{1}] and "Hall-B fit" [from ca. 2016, had also EG1b JLab g_{1} data].

Sample fill-in results for Δ_{2}

- Use Simula as example, and proceed as for real data: got for contribution above and below data region

$$
\begin{aligned}
& \Delta_{2}(\mu H, \text { fill-in })=-0.309 \pm 0.129 \\
& \Delta_{2}(e H, \text { fill-in })=-0.473 \pm 0.180 \\
& \Delta_{2}^{\text {corr }}(\text { fill-in })= \\
& =0.116 \pm 0.043
\end{aligned}
$$

- Uncertainty reduced by factor ca. 4 (rel. to eH).

Modifications from existing work

- $\Delta_{2}(e H)=-1.98 \pm(0.16)_{\text {data }} \pm(0.38)_{\text {model }}$ $\Delta_{2}(\mu H)=-1.40 \pm(0.11)_{\text {data }} \pm(0.31)_{\text {model }}$ $\Delta_{2}^{\text {corr }}=0.38 \pm(0.06)_{\text {data }} \pm(0.10)_{\text {model }}$
- $\Delta_{1}(e H)=6.78 \pm(1.02)_{\text {data }} \pm(0.24)_{\text {model }}$ $\Delta_{1}(\mu H)=5.69 \pm(0.84)_{\text {data }} \pm(0.20)_{\text {model }}$

$$
\Delta_{1}^{\text {corr }}=-0.41 \pm(0.34)_{d a t a} \pm(0.06)_{\text {model }}
$$

- $\Delta_{\text {pol }}^{\text {corr }}=\frac{m_{\mu} \alpha}{2 \pi\left(1+\kappa_{p}\right) m_{p}}\left(\Delta_{1}^{\text {corr }}+\Delta_{2}^{\text {corr }}\right)=-1.24 \pm 17.0 \mathrm{ppm}$
- $\Delta_{R}^{\text {corr }}=-156.7 \pm 3.7 \mathrm{ppm}$

Results

. $\Delta_{S}^{i m p r}(\mu H)=\frac{m_{r \mu}}{m_{r e}} \Delta_{S}^{\text {expt }}(e H)+\Delta_{R}^{\text {corr }}+\Delta_{p o l}^{\text {corr }}=-157.9 \pm 17.4 \mathrm{ppm}$

- Fermi energy $E_{F}(\mu H)=182.443 \mathrm{meV}$
- Quoted uncertainty in $\Delta_{S}^{i m p r}(\mu H)$ leads to 0.003 meV uncertainty in $E_{H F S}^{1 S}(\mu H)$ (or $\approx 2 \times 10^{-5}$ fractionally).
- For separate and uncoupled $e H$ and μH calculations:
- Dispersive calculation is complete, well defined, and unambiguous.
- New data reduces uncertainty limits in calculated HFS by more than factor 2.
- Can do better for μH by getting some terms using experimental HFS data for $e H$
- Reduces uncertainty limits by about another factor 3 (for μH only).
- Still "tension" with EFT calculation that requires resolution.

Beyond the end

Comments

- Early history: begun by Iddings (1965), finalized by Drell and Sullivan (1967), put in present notation by de Rafael (1971).
No spin-dependent data existed,
no nonzero evaluation for > 30 years, until Faustov and Martynenko (2002), then modern era starts
- Someone added something: the F_{2}^{2} term. Not inelastic. (Put in here, taken out somewhere else.) Thought convenient in 1967, still here in 2024..
- Δ_{1} term as written finite in $m_{e} \rightarrow 0$ limit, because of known sum rule, $4 m_{p} \int_{\nu_{t h}}^{\infty} \frac{d \nu}{\nu^{2}} g_{1}(\nu, 0)=-\kappa_{p}^{2}$

More fit comparisons

- Scaling region; near threshold W.

Unsubtracted dispersion relation (DR)?

- Was once openly discussed (<2006, say), now seems generally thought o.k.
- DR comes from Cauchy integral formula applied with some contour (closed integration path)

$$
H_{1}\left(\nu, Q^{2}\right)=\frac{1}{2 \pi i} \oint \frac{H_{1}\left(\nu^{\prime}, Q^{2}\right)}{\nu^{\prime 2}-\nu^{2}} d \nu^{\prime 2}
$$

- (DR in $\nu\left(\right.$ or $\left.\nu^{2}\right)$ with Q^{2} fixed $)$

Dispersion relation

- Work into

$$
H_{1}\left(\nu, Q^{2}\right)=\frac{\left.\operatorname{Res} H_{1}\left(\nu, Q^{2}\right)\right|_{e l}}{\nu_{e l}^{2}-\nu^{2}}+\frac{1}{\pi} \int_{\text {cut }} \frac{\operatorname{Im} H_{1}\left(\nu^{\prime}, Q^{2}\right)}{\nu^{\prime 2}-\nu^{2}} d \nu^{\prime 2}+\frac{1}{2 \pi i} \int_{\left|\nu^{\prime}\right|=\infty} \frac{H_{1}\left(\nu^{\prime}, Q^{2}\right)}{\nu^{\prime 2}-\nu^{2}} d \nu^{\prime 2}
$$

- Drop the $|\nu|=\infty$ term. O.k. if H_{1} falls at high ν.
- Can view as standard or as dramatic assumption.
- The elastic term can be worked out, sticking on-shell form factors at the γp vertices,

$$
H_{1}^{e l}=\frac{2 m_{p}}{\pi}\left(\frac{Q^{2} F_{1}\left(Q^{2}\right) G_{M}\left(Q^{2}\right)}{\left(Q^{2}-i \epsilon\right)^{2}-4 m_{p}^{2} \nu^{2}}-\frac{F_{2}^{2}\left(Q^{2}\right)}{4 m_{p}^{2}}\right)
$$

- The second term does not fall with ν at fixed Q^{2}.
- Unsubtracted DR fails for $H_{1}^{e l}$ alone. Overall success requires exact cancelation between elastic and inelastic contributions.
(In case of interest: $H_{2}^{e l}=-\frac{2 m_{p}}{\pi} \frac{m_{p} \nu F_{2}\left(Q^{2}\right) G_{M}\left(Q^{2}\right)}{\left(Q^{2}-i \epsilon\right)^{2}-4 m_{p}^{2} \nu^{2}}$.)

But then,

- Free quarks if there is at least one large momentum scale. So at high ν, Compton amplitude for proton should be sum of Compton amplitudes for free quarks, which have zero F_{2}.
- Regge theory suggests H_{1} must fall with ν. See Abarbanel and Nussinov (1967), who show $H_{1} \sim \nu^{\alpha-1}$ with $\alpha<1$.*
- Very similar DR derivation gives GDH sum rule, which is checked experimentally and works, within current experimental uncertainty.
- GDH sum rule also checked in LO and NLO order perturbation theory in QED. Appears to work.

Resolution?

- In modern times, authors who use experimental scattering data and DR to calculate the 2γ corrections assume an unsubtracted DR works for all of H_{1}.
- Reevaluation always possible.
- Proceed to next topic, comparison of data driven evaluations of HFS to evaluations using B χ PT to obtain $H_{1,2}$.
- See if subtraction comments come into play.

Side note: how good need we be?

- New measurements of HFS in μH in 1S state are planned.
- May measure to 0.1 ppm (as fraction of Fermi energy). But need theory prediction to help determine starting point of laser frequency scan.
- From 2018 conference at MITP (Mainz), want theory prediction to 25 ppm or better. Better is what we should look for.
- Believe state of art for HFS in 1S μH is from Antognini, Hagelstein, Pascalutsa (2022),

$$
E_{\mathrm{HFS}}^{1 \mathrm{~S}}=182.634(8) \mathrm{meV}
$$

or 44 ppm.

Application of B χ PT

- Using chiral perturbation theory, one can calculate beyond the elastic case diagrams like

- Or diagrams where there is a Δ-baryon on the hadronic leg,

- These can be used to calculate $H_{1,2}$, at low Q^{2} and CM energy W not too far from threshold. Also can get $\gamma^{*} N \rightarrow \pi N$ or $\gamma^{*} N \rightarrow \Delta$ and from them obtain $g_{1,2}$ at similarly low kinematics.

g_{1} comparison

- Compare g_{1} from $\mathrm{B} \chi \mathrm{PT}$ (blue lines) to JLab data

- Plots are "unofficial": Made by me* and involve spreading Δ pole out using Lorentzian of same total area.
- O.k. This won't explain difference in $\Delta_{p o l}$ results.

Another g_{1} comparison

- green = proton contribution
- gold $=\Delta$ contribution
- blue = sum

Non-pole terms

- Non-pole means ν independent terms in $H_{1,2}$.
. Recall elastic $H_{1}^{e l}=\frac{2 m_{p}}{\pi}\left(\frac{Q^{2} F_{1}\left(Q^{2}\right) G_{M}\left(Q^{2}\right)}{\left(Q^{2}-i \epsilon\right)^{2}-4 m_{p}^{2} \nu^{2}}-\frac{F_{2}^{2}\left(Q^{2}\right)}{4 m_{p}^{2}}\right)$.
- The B χ PT results for H_{1} with $\pi-N$ and Δ intermediate states also have non-pole terms.
- To calculate energies for the non-pole terms, cannot use the DR (at least not un-subtracted ones), but can use the expressions on slide 7 , which were before any Cauchy trickery was used

Pole and non-pole

- One part: The Δ contribution to μH HFS for 2 S state*

$$
\begin{aligned}
E_{\text {pol }}^{H F S} & =-40.69 \mu \mathrm{eV} & & \text { pole } \\
& =39.54 \mu \mathrm{eV} & & \text { non-pole } \\
& =-1.15 \mu \mathrm{eV} & & \text { total }
\end{aligned}
$$

- Lot of cancellation.
- But from asymptotic freedom, or from Regge analysis, or from success of DHG sum rule, expect zero non-pole term. Totality, from elastic and resonances and inelastic terms, needs to add to zero for the ν independent terms.
- Something to talk about.

One point

- How should one deal with non-zero non-pole terms that result from partial information, when one knows that the non-pole terms are zero when one has complete information?

$\Delta_{p o l}$ with newest $g_{1,2}$

- Defer to David Ruth (next after next talk).
- Except for comment on handling regions outside the data range.
- Mostly, because of the kinematic factors, the need is for data at low Q^{2} and low ν (or W near threshold), and this is where the data is.
- Again, mostly, where there is no data and we use models or interpolations, the contributions to $\Delta_{1,2}$ are not great and the accruing uncertainty is not great.

$\Delta_{p o l}$ with newest $g_{1,2}$

- An exception may be the very low Q^{2} region, where there is no data. For the 2003 data, this was $Q^{2}<0.0452 \mathrm{GeV}^{2}$.
- And there may be a problem when comparing to $\chi \mathrm{PT}$.
- What we did: reminder

$$
\Delta_{1}=\frac{9}{4} \int_{0}^{\infty} \frac{d Q^{2}}{Q^{2}}\left\{F_{2}^{2}\left(Q^{2}\right)+\frac{8 m_{p}^{2}}{Q^{2}} B_{1}\left(Q^{2}\right)\right\}
$$

with

$$
B_{1}\left(Q^{2}\right)=\frac{4}{9} \int_{0}^{x_{\mathrm{lh}}} d x \beta_{1}(\tau) g_{1}\left(x, Q^{2}\right) .
$$

- For very low Q^{2} we used

$$
B_{1}\left(Q^{2}\right)=-\frac{\kappa_{p}^{2}}{8 m_{p}^{2}} Q^{2}+c_{1 B} Q^{4}=-\frac{\kappa_{p}^{2}}{8 m_{p}^{2}} Q^{2}+4.94 Q^{4} / \mathrm{GeV}^{4}
$$

got by fitting to data $Q^{2}<0.3 \mathrm{GeV}^{2}$

$\Delta_{p o l}$ with newest $g_{1,2}$

- The region $Q^{2}<0.0492 \mathrm{GeV}^{2}$ contributed about 15% of Δ_{1} and (by our estimate) 30% of the uncertainty.
- Use standard expansion for the form factor,

$$
F_{2}\left(Q^{2}\right)=\kappa_{p}\left(1-\frac{1}{6} R_{\text {Pauli }}^{2} Q^{2}+\ldots\right)
$$

- Get Integrand =

$$
\frac{9}{4} \frac{1}{Q^{2}}\left(F_{2}^{2}+\frac{8 m_{p}^{2}}{Q^{2}} B_{1}\right)=-\frac{3}{4} \kappa_{p}^{2} R_{P \text { Puuli }}^{2}+8 m_{p}^{2} c_{1 B}
$$

- And $\Delta_{1}\left(0 \rightarrow Q_{\text {low data }}^{2}\right) \approx$ Integrand $\cdot Q_{\text {low data }}^{2} \approx 1.35$

$\Delta_{p o l}$ with newest $g_{1,2}$

- $\chi \mathrm{PT}$ has knowledge of g_{1} at low Q^{2}, and can do the integrals. Do good approximation by expanding the β_{1} function for low Q^{2}.
- Work for a while to get Integrand =

$$
-\frac{3}{4} \kappa_{p}^{2} R_{\text {Pauli }}^{2}+8 m_{p}^{2} c_{1}-\frac{5 m_{p}^{2}}{4 \alpha} \gamma_{0}+\mathcal{O}\left(Q^{2}\right)
$$

. Where $\gamma_{0}=\frac{2 \alpha}{m_{p}^{2}} \int \frac{d \nu}{\nu^{4}} g_{1}(\nu, 0)$
and c_{1} came from

$$
I\left(Q^{2}\right) \equiv 4 m_{p} \int \frac{d \nu}{\nu^{2}} g_{1}\left(\nu, Q^{2}\right)=-\kappa_{p}^{2}+c_{1} Q^{2}+\mathcal{O}\left(Q^{4}\right)
$$

$\Delta_{p o l}$ with newest $g_{1,2}$

- Value for known, and doing integrals to get c_{1}, find

$$
\Delta_{1}\left(0 \rightarrow Q_{\text {low data }}^{2}\right) \approx \text { Integrand } \cdot Q_{\text {low data }}^{2} \approx-0.45
$$

- Not even same sign!
- Corresponding numbers for μ are ≈ 0.86 and -0.20
. Remembering $\Delta_{\mathrm{pol}}=\frac{\alpha m_{\mu}}{2\left(1+\kappa_{p}\right) \pi m_{p}}\left(\Delta_{1}+\Delta_{2}\right)$, difference gives about 50 ppm or about 15% of discrepancy.
- More to talk about!

