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Goals of this talk

• Present “stand-alone” calculation of HFS for , 
.   New data, allows great improvement 

over earlier results.  This work is finished and 
submitted.

• Explain using measured  HFS with some 
scaling and corrections leads for significant 
reduction is uncertainty limits for  HFS.  
Results not checked: will indicate uncertainty 
limits but not central values.

ℓH
ℓ = μ or e

eH

μH
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New input data

• For our calculation, input data includes the spin-
dependent proton structure functions , 
measured in polarized inelastic  scattering

• Functions of W (total CM  energy) and  (photon off-
shell mass).

• Previously, no  data at all.  Now g2p JLab experiment 
84 data points, at 4 different          (Ruth et al., 2022)

• And wonderfully extended set of  data from JLab EG4. 
1085 data points, at 25 values of ,  
range                 (Zheng et al., 2021)

g1 and g2
ep

ep Q2

g2
Q2

g1
Q2

≈ [0.01, 1.0] GeV2
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For information, the old data
• No old data at all for .   

Wilczek-Wandzura relation could give part of  
and there were data fits (!) 

• JLab EG1b  data, available in 2005  
1124 data points at 27 values of   
range    
(publication Fersch et al., 2017)

• SLAC E155  data, 24 data points,  
(Anthony et al., 2000)

• Actual data for  and good lower   data creates 
opportunity for much improved calculational result

g2
g2

g1
Q2

≈ [0.05, 5.0] GeV2

g1 Q2 > 1.2 GeV2

g2 Q2 g1
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New planned experiments
• CREMA, FAMU, & JPARC propose measurement of HFS in 

ground state H

• 1S H  splitting is about 182.636 meV 
or wavelength ≈ 6.8 𝜇m (infrared) 
or frequency ≈ 44.2 THz

• Worry about time to run experiment: 
Have laser, frequency width ≈ 100 MHz

• Say spread of prediction is about 0.16 meV (can do better!) 
➔  spread of frequency prediction is ≈ 40 GHz 
➔  need ≈ 400 frequency settings of laser to scan HFS 
region.

μ

μ
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Planned experiments run time
• From talks: need 1.4 hour to get 4σ signal above background, 

and 1 hour to change laser frequency.

• 2.4 hours × 400 = 960 hours ≈ 8 weeks    (@ 5 days/week) 
Ugh: other groups want the PSI (CREMA’s location) also

• ∴ want good theoretical help to reduce the laser scan width

• Anticipate fractional experimental uncertainty upon completion 
better than 100 MHz/44.2 THz ≈ 2 ppm

• Current best  HFS splitting measurement is from CREMA 
(Science, 2013) and is 22.8089 (51) meV for the 2S state,  
or ≈ 220 ppm.

• For comparison,  
     or 1.4 ppt

μH

E1S,HFS(eH) = h × 1420.405 751 768 (2) MHz
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The calculation: lowest order
• H-atom, S-state, spin-dependent splitting  

UG textbook calculation!
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• Get          

•                    Bohr magneton  
     exact magnetic moment for proton

• “Fermi energy” ;    Can evaluate to about 10-figure accuracy

•
Alternate writings, 

Ep
F =

8π
3

μBμp

a3
B

=
8π
3

(mrα)3μBμp

μB = e/(2mℓ)
μp = (1 + κp ) e/(2mp)

Ep
F =

8α4

3
m2

ℓ (1 + κp)
mp (1 + mℓ /mp)3

=
16α2

3
μp

μB

R∞

(1 + mℓ /mp)3



Next need corrections
• Write as 

 

•    well calculated

• “some smaller corrections”  won’t be discussed

•  = structure dependent corrections,  
        here meaning corrections from 2-  exchange,  
   
 

• Conventionally separate as 
            

Ep
HFS = Ep

F (1 + ΔQED + ΔS + some smaller corrections)
ΔQED

ΔS
γ

ΔS = ΔZ + ΔR + Δpol

8
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2  corrections      .γ
• Not calculable ab initio.   

But lower part is forward Compton scattering of off-shell photons, 
algebraically gotten from 
    

• Spin dependence is in the antisymmetric part 

• Imaginary part of above is related to polarized inelastic 
scattering, with  
 

• Emphasize:  and  are measured at SLAC, HERMES, JLab,… 

Tμν(q, p, S) =
i

2πmp ∫ d4ξ eiq⋅ξ ⟨pS T jμ(ξ)jν(0) pS⟩

TA
μν =

i
mp

ϵμναβqα [H1(ν, Q2) Sβ + H2(ν, Q2)
p ⋅ q Sβ − S ⋅ q pβ

p ⋅ q ]
ep

Im H1(ν, Q2) =
1
ν

g1(ν, Q2) and Im H2(ν, Q2) =
mp

ν2
g2(ν, Q2)

g1 g2
9

q q

kk

p p

Some use 
S1,2 = 4π2αH1,2



2  corrections            .γ

• Combine electron part of diagram with Compton bottom,  and 
energy from 2  exchange  

  

   

• (Wick rotated).  Great, but don’t know  from data.

• But do know Im parts, and if no subtraction, simple Cauchy 
(dispersion relation) gives 
               

and similarly for . 

γ
Δpol =

E2γ

EF inel

=
2αme

(1 + κp)π3mp

× ∫
d4Q

(Q4 + 4m2
e Q2

0)Q2 {(2Q2 + Q2
0)H inel

1 (iQ0, Q2) − 3Q2Q2
0 H inel

2 (iQ0, Q2)}

H1,2

H inel
1 (ν, Q2) =

1
π ∫

∞

ν2
th

dν′￼
2 Im H1(ν′￼, Q2)

ν′￼
2 − ν2

H2
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Do some integrals analytically, getting

•

•

•

•        

•  are known kinematic weighting functions.

Δpol =
αmℓ

2(1 + κp)πmp
(Δ1 + Δ2)

Δ1 = ∫
∞

0

dQ2

Q2 {β1( Q2

4m2
ℓ

)F2
2(Q2) + 4mp ∫

∞

νth

dν
ν2

β̃1 (Q2, ν, mℓ) g1(ν, Q2)}
Δ2 = − 12mp ∫

∞

0

dQ2

Q2 ∫
∞

νth

dν
ν2

β̃2 (Q2, ν, mℓ) g2(ν, Q2)

β1(τ) = − 3τ + 2τ2 + 2(2 − τ) τ(τ + 1)

β̃1 and β̃2
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Completion of  calculationΔ1

• More comments on  before going to 

•  noticeable contributions from outside the data 
region.  Need  model or fit to extrapolate.  Have fit 
of Simula et al (PRD, 2002) and  
fit of Hall B collaboration (unpub., ca. 2016) and fit 
of E155 (PLB, 2000, high , high  only).

• Hall B fits best where we have comparison data 

Δ1 g2

∃

Q2 W
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Some fit comparisons

• Generally good agreement among the three fits in scaling region (high 
, high ).

• Hall B closer in data region. (They did have EG1b data.)

• We use the Hall B fit for the fill-in contributions (higher  for in data 
region, and  above and below data region).

Q2 W

W Q2

Q2
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 results todayΔ1

•  =  4.71 ± 1.02   from data  
            +   1.60 ± …      high  fill-in, data region  
            +   0.12 ± …      low  
             +    0.34  ± …       high  
 
      =   6.78 ± 1.02data ± 0.23fill-in  
         

• Old  = 8.85 ± 2.78

• About -1 unit from newer data and  
about -1 from updated fill-in choice. 

Δ1(eH)
W

Q2

Q2

Δ1(eH)
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Modern , short versionΔ2

• Thanks to g2p JLab experiment, have data where 
there was none before

•  =   1.20data ± 0.16data + fill-in  
              =   1.98     ± 0.16data ± 0.38fill-in

• Old  =  0.57 ± 0.57

• Big difference from having data.

• Wilczek-Wandzura close to old value, not to data.

Δ2(eH) −
−

Δ2(eH) −
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 resultsΔpol

• Reminders:           

• New results:  
                      

Δpol =
αmℓ

2(1 + κp)πmp
(Δ1 + Δ2)

Ep
HFS = Ep

F (1 + ΔQED + ΔZ + ΔR + Δpol + some smaller corrections)

Δpol(eH) = 1.09 ± 0.31 ppm
Δpol(μH) = 200.6 ± 52.4 ppm

16



Size of uncertainty

•                         (new)

•

•                     (AMT, with range to AS 
                                                                                      and Kelly, from 2008)

•

• Uncertainties above give (Z-R-pol) 15, 1, 9 𝜇eV, resp. 
                                 ( or fractionally 8, small, 5, × 10-5 )

• (Overall result given on previous slide)

Δpol(μH) = 200.6 ± 52.4 ppm

ΔR = 931 ± 3 ppm

ΔZ = − 7703 ± 80 ppm

EF(μH) = 182.443 meV

17



More accurate 𝜇H results 

• Bootstrap off super accurate eH results, 

• Will refer to as “scaling + corrections”

• Due to Peset and Pineda and to Tomalak (2018)  
(Presentation here more like Tomalak)

• See also review by Antognini, Hagelstein, & 
Pascalutsa (2022) and Wednesday evening poster of 
Vladyslava Sharkovska.

Eexpt
1S-HFS(H) = 1 420.405 751 768(2) MHz

18



What is it?

• Reminder 

• Can “reverse engineer” , to 7 figure 
accuracy, using  and .

• Need .

EHFS = EF(1 + ΔQED
⏟

will quote

+ ΔμVP + ΔhVP + ΔWeak

known, same for μH as for eH

+ ΔZ + ΔR + Δpol

ΔS

)

ΔS(eH)
Eexpt

HFS EF(eH)

ΔS(μH)
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Tautology, & reworking

•

• Cannot be wrong!  For “improved”  use  

• Scaling for first term, calculation for second, but 
treat the terms in square bracket as whole. 
 
(  is reduced mass)

ΔS(μH) =
mrμ

mre
ΔS(eH) + [ΔS(μH) −

mrμ

mre
ΔS(eH)]

ΔS

Δimpr
S (μH) =

mrμ

mre
Δexpt

S (eH) + [ΔS(μH) −
mrμ

mre
ΔS(eH)]

mrℓ = mpmℓ /(mp + mℓ)
20



Why this scaling?
• The term as a whole is a correction  
 

 

 
with a good deal of internal cancellation, both in 
the central value and in the uncertainty estimates.

• Zemach term is biggest term in  , and is 
proportional to the reduced mass 

 

and cancels out of  .

Δcorr
S = ΔS(μH) −

mrμ

mre
ΔS(eH)

ΔS

ΔZ = − 2ZαmrℓRZ =
8Zαmrℓ

π ∫
∞

0

dQ
Q2 [ GE(Q2)GM(Q2)

1 + κp
− 1]

Δcorr
S

21



Use  as further exampleΔcorr
2

•

• Note lepton mass factor, so that, e.g., 
 

• For central values, easy: just subtract already 
calculated numbers

•  significantly reduced compared to (say) 

• Uncertainty limits requires some thought, but they are 
significantly reduced also

Δcorr
pol =

αmℓ

2π(1 + κp)mp
(Δcorr

1 + Δcorr
2 )

Δcorr
2 = Δ2(μH) −

mp + me

mp + mμ
Δ2(eH)

Δcorr
1 Δ1(μH)
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Uncertainty limits
• Central value, ab initio

•  

 
 
(Weighting function  known, .)

•  

with  

• Lots of cancellation in  . 

Δ2(ℓH) = − 24m2
p ∫

dQ2

Q4 ∫ dx β̃2(Q2, x, mℓ)g2(x, Q2)

β̃2 x = Q2/(2mpν)

Δcorr
2 = − 24m2

p ∫
dQ2

Q4 ∫ dx β̃corr
2 (Q2, x, mμ, me)g2(x, Q2)

β̃corr
2 (Q2, x, mμ, me) = β̃2(Q2, x, mμ) −

mp + me

mp + mμ
β̃2(Q2, x, me)

β̃corr
2
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Practical
•  data at four values of  and set of  (initial state energy) 
 
 
 

• First integral  
 

              

• the  of the data are centers of bins with widths  

g2 Q2 W

Bcorr
2 (Q2) = ∫ dx β̃corr

2 (Q2, x, mμ, me) g2(x, Q2)

= ∫
dW

J(W )
β̃corr

2 (Q2, W, mμ, me) g2(x, Q2)

Wi ΔWi

Bcorr
2 (Q2) = ∑

i

ΔWi

J(Wi)
β̃corr

2 (Q2, Wi, mμ, me) g2(Wi, Q2)

24
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for uncertainties
• For central values, same as before

• For uncertainties, should add in quadrature.  If  are 
uncertainties in data values, 

 

(and likewise for next integral, the  integral)

• Some results:  from  data only 
 
 

 
 

δg2

δBcorr
2 (Q2) = ∑

i [ ΔWi

J(Wi)
β̃corr

2 (Q2, W, mμ, me) δg2(Wi, Q2)]
2

1/2

Q2

Δ2 g2
Δ2,data(eH) = − 1.205 ± 0.118
Δ2,data(μH) = − 0.878 ± 0.078

Δcorr
2,data = 0.206 ± 0.033
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Fill-in

• Need model or fit to get contributions to  for  
above and below data region, and for  above 
measured values in data region.

• Methods: a) Do Padé or other fit to  from data 
region, and use extrapolation to get fill-in. 
b) Use model fits to get  (and ) 
everywhere, & use for fill-ins outside data region.

• Already mentioned the two models: Simula et al (2002) 
[based on good physics but only data was high  
SLAC data for ] and “Hall-B fit” [from ca. 2016, had 
also EG1b JLab  data].

Δ2 Q2

W

B2(Q2)

g2(x, Q2) g1(x, Q2)

Q2

g1
g1
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Sample fill-in results for Δ2

• Use Simula as example, and proceed as for real 
data: got for contribution above and below data 
region  
     
     
    

• Uncertainty reduced by factor ca. 4 (rel. to ). 
     

Δ2(μH, fill-in) = − 0.309 ± 0.129
Δ2(eH, fill-in) = − 0.473 ± 0.180
Δcorr

2 (fill-in) = 0.116 ± 0.043

eH

27



Modifications from existing work
•  

 
 

•  
 

 

•

•

Δ2(eH) = − 1.98 ± (0.16)data ± (0.38)model
Δ2(μH) = − 1.40 ± (0.11)data ± (0.31)model

Δcorr
2 = 0.38 ± (0.06)data ± (0.10)model

Δ1(eH) = 6.78 ± (1.02)data ± (0.24)model
Δ1(μH) = 5.69 ± (0.84)data ± (0.20)model

Δcorr
1 = − 0.41 ± (0.34)data ± (0.06)model

Δcorr
pol = mμα

2π(1 + κp)mp (Δcorr
1 + Δcorr

2 ) = − 1.24 ± 17.0 ppm

Δcorr
R = − 156.7 ± 3.7 ppm
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Results …

•

• Fermi energy 

• Quoted uncertainty in  leads to  
 uncertainty in   

( or  fractionally).

Δimpr
S (μH) =

mrμ

mre
Δexpt

S (eH) + Δcorr
R + Δcorr

pol = − 157.9 ± 17.4 ppm

EF(μH) = 182.443 meV

Δimpr
S (μH)

0.003 meV E1S
HFS(μH)

≈ 2 × 10−5
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Summary

• For separate and uncoupled  and  calculations:

• Dispersive calculation is complete, well defined, and unambiguous.  

• New data reduces uncertainty limits in calculated HFS by more 
than factor 2. 

• Can do better for  by getting some terms using experimental HFS 
data for 

• Reduces uncertainty limits by about another factor 3 (for  only).

• Still “tension” with EFT calculation that requires resolution.

eH μH

μH
eH

μH
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Beyond the end
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Comments
• Early history: begun by Iddings (1965),  

  finalized by Drell and Sullivan (1967), 
    put in present notation by de Rafael (1971).   
      No spin-dependent data existed,  
        no nonzero evaluation for > 30 years,  
          until Faustov and Martynenko (2002),  
            then modern era starts

• Someone added something: the  term.  Not inelastic. 
(Put in here, taken out somewhere else.)  
Thought convenient in 1967, still here in 2024..

•  term as written finite in  limit, because of known sum 
rule,                                            (DHGHY)

F2
2

Δ1 me → 0
4mp ∫

∞

νth

dν
ν2

g1(ν,0) = − κ2
p
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More fit comparisons

• Scaling region;  near threshold .W

33
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Unsubtracted dispersion relation (DR)?

• Was once openly discussed (< 2006, say), now 
seems generally thought o.k.

• DR comes from Cauchy integral formula applied 
with some contour (closed integration path) 
 
 

• ( DR in  with  fixed )

H1(ν, Q2) =
1

2πi ∮
H1(ν′￼, Q2)
ν′￼

2 − ν2
dν′￼

2

ν (or ν2) Q2

34

Re ν2

Im ν2

ν2



Dispersion relation             .

• Work into  

• Drop the  term.  O.k. if  falls at high .

• Can view as standard or as dramatic assumption.

H1(ν, Q2) =
𝖱𝖾𝗌 H1(ν, Q2)

el

ν2
el − ν2

+
1
π ∫cut

𝖨𝗆 H1(ν′￼, Q2)
ν′￼

2 − ν2
dν′￼

2 +
1

2πi ∫|ν′￼|=∞

H1(ν′￼, Q2)
ν′￼

2 − ν2
dν′￼

2

|ν | = ∞ H1 ν

35
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H1
• The elastic term can be worked out, sticking on-shell 

form factors at the  vertices, 

       

• The second term does not fall with  at fixed .

• Unsubtracted DR fails for  alone.  Overall success 
requires exact cancelation between elastic and 
inelastic contributions.

• ( In case of interest:    . )  

γp
Hel

1 =
2mp

π ( Q2F1(Q2)GM(Q2)
(Q2 − iϵ)2 − 4m2

pν2
−

F2
2(Q2)
4m2

p )
ν Q2

Hel
1

Hel
2 = −

2mp

π
mpνF2(Q2)GM(Q2)
(Q2 − iϵ)2 − 4m2

pν2

36



But then,
• Free quarks if there is at least one large momentum 

scale.  So at high , Compton amplitude for proton 
should be sum of Compton amplitudes for free 
quarks, which have zero  .

• Regge theory suggests  must fall with .  See 
Abarbanel and Nussinov (1967), who show 

 with *

• Very similar DR derivation gives GDH sum rule, which 
is checked experimentally and works, within current 
experimental uncertainty.

• GDH sum rule also checked in LO and NLO order 
perturbation theory in QED.  Appears to work.

ν

F2

H1 ν

H1 ∼ να−1 α < 1.

37
*Footnote 16 of this paper reads:  For an indication of the lengthy details involved one may see M. Gell-Mann, M. L. Goldberger, and F. .E Low, Rev. Mod. Phys. 36, 640 (1964).



Resolution?

• In modern times, authors who use experimental 
scattering data and DR to calculate the 2  
corrections assume an unsubtracted DR works for 
all of  . 

• Reevaluation always possible.

• Proceed to next topic, comparison of data driven 
evaluations of HFS to evaluations using B PT to 
obtain  .

• See if subtraction comments come into play.

γ

H1

χ
H1,2
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Side note: how good need we be?

• New measurements of HFS in  in 1S state are planned.

• May measure to 0.1 ppm (as fraction of Fermi energy).  
But need theory prediction to help determine starting point 
of laser frequency scan.

• From 2018 conference at MITP (Mainz), want theory 
prediction to 25 ppm or better.   Better is what we should 
look for.

• Believe state of art for HFS in 1S  is from Antognini, 
Hagelstein, Pascalutsa (2022), 
                               
or 44 ppm.  

μH

μH

E1S
HFS = 182.634(8) meV
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Application of B PTχ
• Using chiral perturbation theory, one can calculate 

beyond the elastic case diagrams like

40

• Or diagrams where there is a -baryon on the 
hadronic leg,

Δ

∆

• These can be used to calculate  , at low  and 
CM energy  not too far from threshold.  Also can 
get    or    and from them obtain 

 at similarly low kinematics.

H1,2 Q2

W
γ*N → πN γ*N → Δ

g1,2



 comparisong1
• Compare  from B PT (blue lines) to JLab datag1 χ

41

• Plots are “unofficial”:  Made by me* and involve 
spreading  pole out using Lorentzian of same 
total area.

• O.k.  This won’t explain difference in  results.

Δ

Δpol

*With greatest thanks to Pascalutsa and Hagelstein 
for providing code for their gamma N -> pi N
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Another  comparisong1

• green = proton contribution

• gold = ∆ contribution

• blue = sum
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Non-pole terms

• Non-pole means  independent terms in  .

• Recall elastic  .

• The B PT results for  with -  and  
intermediate states also have non-pole terms.

• To calculate energies for the non-pole terms, 
cannot use the DR (at least not un-subtracted 
ones), but can use the expressions on slide 7, 
which were before any Cauchy trickery was used 

ν H1,2

Hel
1 =

2mp

π ( Q2F1(Q2)GM(Q2)
(Q2 − iϵ)2 − 4m2

pν2
−

F2
2(Q2)
4m2

p )
χ H1 π N Δ

43



Pole and non-pole
• One part: The  contribution to  HFS for 2S state*  

               
                       
                      

• Lot of cancellation.

• But from asymptotic freedom, or from Regge 
analysis, or from success of DHG sum rule, expect 
zero non-pole term.  Totality, from elastic and 
resonances and inelastic terms, needs to add to zero 
for the  independent terms.  

• Something to talk about.

Δ μH
EHFS

pol = − 40.69 μeV pole
= 39.54 μeV non-pole
= − 1.15 μeV total

ν

44*from Hagelstein (2016)



One point

• How should one deal with non-zero non-pole 
terms that result from partial information, when 
one knows that the non-pole terms are zero when 
one has complete information?
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 with newest Δpol g1,2
• Defer to David Ruth (next after next talk).

• Except for comment on handling regions outside 
the data range.

• Mostly, because of the kinematic factors, the need 
is for data at low  and low  (or  near 
threshold), and this is where the data is.

• Again, mostly, where there is no data and we use 
models or interpolations, the contributions to 
are not great and the accruing uncertainty is not 
great.

Q2 ν W

Δ1,2
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 with newest Δpol g1,2
• An exception may be the very low  region, where there 

is no data.  For the 2003 data, this was .  

• And there may be a problem when comparing to PT.

• What we did:  reminder    
                    

 

with               .

• For very low  we used  

      

got by fitting to data 

Q2

Q2 < 0.0452 GeV2

χ

Δ1 =
9
4 ∫

∞

0

dQ2

Q2 {F2
2(Q2) +

8m2
p

Q2
B1(Q2)}

B1(Q2) =
4
9 ∫

xth

0
dx β1(τ)g1(x, Q2)

Q2

B1(Q2) = −
κ2

p

8m2
p

Q2 + c1BQ4 = −
κ2

p

8m2
p

Q2 + 4.94 Q4/GeV4

Q2 < 0.3 GeV2
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 with newest Δpol g1,2

• The region  contributed about 15% 
of  and (by our estimate) 30% of the uncertainty.

• Use standard expansion for the form factor, 
         

• Get Integrand =     

         

• And  Integrand

Q2 < 0.0492 GeV2

Δ1

F2(Q2) = κp(1 −
1
6

R2
PauliQ

2 + …)

9
4

1
Q2 (F2

2 +
8m2

p

Q2
B1) = −

3
4

κ2
p R2

Pauli + 8m2
pc1B

Δ1(0 → Q2
low data) ≈ ⋅ Q2

low data ≈ 1.35
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 with newest Δpol g1,2

• PT has knowledge of  at low , and can do 
the integrals.  Do good approximation by 
expanding the  function for low .

• Work for a while to get Integrand = 

            ,

• Where  

and  came from   
      

χ g1 Q2

β1 Q2

−
3
4

κ2
p R2

Pauli + 8m2
pc1 −

5m2
p

4α
γ0 + 𝒪(Q2)

γ0 =
2α
m2

p ∫
dν
ν4

g1(ν,0)

c1
I(Q2) ≡ 4mp ∫

dν
ν2

g1(ν, Q2) = − κ2
p + c1Q2 + 𝒪(Q4)
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 with newest Δpol g1,2

• Value for known,  and doing integrals to get , find  
    Integrand

• Not even same sign!

• Corresponding numbers for  are  and 

• Remembering , difference 

gives about 50 ppm or about 15% of discrepancy.

• More to talk about!

c1
Δ1(0 → Q2

low data) ≈ ⋅ Q2
low data ≈ − 0.45

μ ≈ 0.86 −0.20

Δpol =
αmμ

2(1 + κp)πmp
(Δ1 + Δ2)
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thanks again to F. Haglestein et al.


