Disentangling Nuclear and Nucleon Contributions

Vadim Lensky (JGU Mainz)

µASTI Meeting Zürich, June 14-15, 2024

Some Thoughts and Observations

- Why disentangle?
- Nuclear elastic terms: sensitivity to form factors
- Single-nucleon inelastic terms: how to account for them?
- Other possible contributions?
- Comments?

Why Disentangle Nuclear from Nucleons

- Nuclear elastic contributions:
 - elastic FF data (parametrisations) have nucleon FFs inside
 - EFT calculations usually also account for nucleon FFs
- Nuclear inelastic contributions:
 - inelastic data (inclusive breakup) taken up to pion threshold and above also have the nucleon inelastic contributions
 - availability of quality data?
 - EFT calculations usually [read: known to me] do not account for inelastic channels beyond breakup [pion production etc.]
 - Possibly need to account for the nucleon part of the inelastic contribution separately
- Nucleon subtraction contributions
 - need to be taken from theory (maybe can be obtained from nucleon data)
 - ➔ Also need to be treated separately

Elastic Nuclear/Nucleon

- Sensitive to details of FFs/parametrisations
- EFTs are likely to do a better job at low Q
 - not only R_E but also higher derivatives need to be correct!

$$R_{\mathsf{F}}^{3} = \frac{48}{\pi} \int_{0}^{\infty} \frac{dQ}{Q^{4}} \left[G_{\mathcal{C}}^{2}(Q^{2}) - 1 - 2G_{\mathcal{C}}'(0) Q^{2} \right]$$
$$= \frac{3}{80\gamma^{3}} \left\{ Z \left[5 - 2Z(1 - 2\ln 2) \right] -320/9 r_{0}^{2}\gamma^{2} \left[Z(1 - 4\ln 2) - 2 + 2\ln 2 \right] +80(Z - 1)^{3} l_{1}^{CO_{S}} \right\}$$

• Objects like R_F^3 and R_Z are not additive:

 $R_F^3 \neq R_{F, \text{ pointlike}}^3 + R_{F, \text{ nucleons}}^3$

• Recall that very [very!] roughly $G_C(Q^2) = G_{C, \text{ pointlike}}(Q^2)\overline{G}_{C, \text{ nucleon}}(Q^2)$

VL, Hiller Blin, Pascalutsa (2021)

Inelastic Nuclear/Nucleon

- No subtraction needed for low v part
- Nuclear theory will also produce well-behaving response functions
- Inelastic nucleon part from data:
 - just integrate over high ν
- Data not available:

- use nucleon data/EFT and rescale by $|\phi_n(0)|^2$
- "sticking in" the nucleon amplitude
- works well for d (and probably ⁴He)
- not so obviously for ³He: $2\alpha_p + \alpha_n$, but $0\gamma_p + \gamma_n$ RCS, Margaryan et al. (2018)
- Similarly take into account the nucleon subtraction function
- Is it always a good approximation (at least for light nuclei)?
- Can this treatment be improved? Should it be improved?

 $Z\delta_{p} + N\delta_{n}$

Inelastic Nuclear/Nucleon

- No subtraction needed for low v part
- Nuclear theory will also produce well-behaving response functions
- Inelastic nucleon part from data:
 - just integrate over high ν
- Data not available:
 - use nucleon data/EFT and rescale by $|\phi_n(0)|^2$
 - "sticking in" the nucleon amplitude

• Nucleon inelastic (as well as its uncertainty) is not so small:

	$\delta^A_{ m Zem}$	$\delta^A_{ m pol}$	$\delta^N_{ m Zem}$	$\delta^N_{ m pol}$	$\delta_{ ext{TPE}}$
$\mu^2 H$	-0.423(04)	-1.245(13)	-0.030(02)	-0.020(10)	-1.718(17)
$\mu^{3}\mathrm{H}$	-0.227(06)	-0.480(11)	-0.033(02)	-0.031(17)	-0.771(22)
$\mu^{3}\mathrm{He^{+}}$	-10.49(23)	-4.23(18)	-0.52(03)	-0.25(13)	-15.49(33)
$\mu^4 { m He^+}$	-6.14(31)	-2.35(13)	-0.54(03)	-0.34(20)	-9.37(44)

Ji et al. (2018)

 $Z\delta_{p} + N\delta_{n}$

Other Possible (TPE) Contributions?

- Pion rescattering?
 - investigated in HBχEFT
 - found negligibly small at current level of precision

• What other contributions can potentially be missing?

Moore, PhD Thesis (2020), McGovern, Moore (unpublished)

Comments? Ideas? Critique?