Proton electromagnetic form factors and radii from lattice QCD

Miguel Salg, Dalibor Djukanovic, Georg von Hippel, Harvey B. Meyer, Konstantin Ottnad, Hartmut Wittig

[PRD 109, 094510], [PRL 132, 211901]

[arXiv:2309.17232v2] (accepted for publication in PRD)

μASTI, June 15, 2024

Outline

- Motivation
- 2 Lattice setup
- Oata analysis
- Model average and final results
- **(5)** Conclusions and outlook

Motivation

- Precision matters if lattice QCD is to have an impact on determination of the proton radii
- In lattice QCD as in the context of scattering experiments: electromagnetic radii extracted from the slope of the corresponding form factors at $Q^2=0$,

$$\langle r^2 \rangle = -\frac{6}{G(0)} \left. \frac{\partial G(Q^2)}{\partial Q^2} \right|_{Q^2 = 0} \tag{1}$$

- Full calculation of the proton and neutron form factors separately necessitates explicit treatment of the numerically challenging quark-disconnected contributions
- Neglected in many previous lattice studies, in particular no simultaneous control of all relevant systematics (continuum and infinite-volume extrapolation)
- ullet Accurate determination of proton radii from muonic hydrogen spectroscopy \Rightarrow other definitions of radii, not previously computed on the lattice, become relevant

Motivation

- Lamb shift
 - LO proton-structure contribution: electric radius
 - NLO: two-photon exchange, dominated by elastic part, depends on third Zemach moment¹,

$$\langle r_E^3 \rangle_{(2)}^p = \frac{24}{\pi} \int_0^\infty \frac{dQ^2}{(Q^2)^{5/2}} \left[(G_E^p(Q^2))^2 - 1 + \frac{1}{3} \langle r_E^2 \rangle^p Q^2 \right]$$
 (2)

- \bullet Associated radius: Friar radius, $r_F^p = \sqrt[3]{\langle r_E^3\rangle_{(2)}^p}$
- Hyperfine splitting (HFS)
 - LO proton-structure contribution: Zemach radius²,

$$r_Z^p = -\frac{2}{\pi} \int_0^\infty \frac{dQ^2}{(Q^2)^{3/2}} \left(\frac{G_E^p(Q^2) G_M^p(Q^2)}{\mu_M^p} - 1 \right)$$
 (3)

• First-principles prediction of Zemach radius could be checked by high-precision experiments

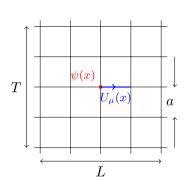
¹Friar 1979 [Ann. Phys. **122**, 151]; ²Zemach 1956 [Phys. Rev. **104**, 1771].

Outline

- Motivation
- 2 Lattice setup
- Oata analysis
- Model average and final results
- **(5)** Conclusions and outlook

QCD on the lattice

- Coupling of QCD is large at large distances / low energies
- Low-energy regime of QCD (typical hadronic scales) is hence inaccessible to perturbative methods
- Powerful tool for the non-perturbative study: lattice QCD
- Replace space-time by a four-dimensional Euclidean lattice
- Gauge-invariant UV-regulator for the quantum field theory due to the momentum cut-off
- Path integral becomes finite-dimensional and can be computed numerically
- Allows a systematic extrapolation to the continuum and infinite-volume limit, $a \to 0$ and $V \to \infty$



Ensembles

Coordinated Lattice Simulations (CLS)³

- Non-perturbatively $\mathcal{O}(a)$ -improved Wilson fermions
- $N_f=2+1$: 2 degenerate light quarks ($m_u=m_d$), 1 heavier strange quark ($m_s>m_{u,d}$)
- $\operatorname{tr} M_q = 2m_l + m_s = \operatorname{const.}$
- Tree-level improved Lüscher-Weisz gauge action
- $m{O}(a)$ -improved conserved vector current

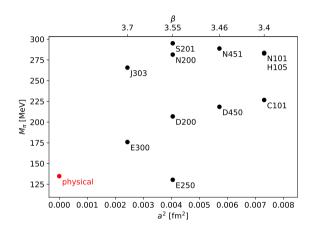
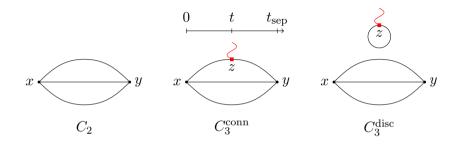


Figure: Overview of the ensembles used in this study

³Bruno et al. 2015 [JHEP **2015** (2), 43]; Bruno, Korzec, and Schaefer 2017 [PRD **95**, 074504].

Nucleon two- and three-point correlation functions



- Measure the two- and three-point correlation functions of the nucleon
- For three-point functions, Wick contractions yield connected and disconnected contribution
- Compute the quark loops via a stochastic estimation using a frequency-splitting technique⁴
- ullet Extract the effective form factors $G_{E,M}^{
 m eff}$ using the ratio method 5

⁴Giusti et al. 2019 [EPJC **79**, 586]; Cè et al. 2022 [JHEP **2022** (8), 220]; ⁵Korzec et al. 2009 [PoS **066**, 139].

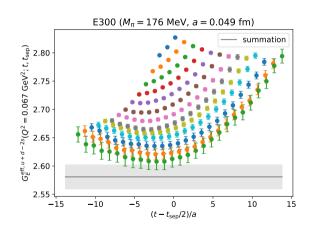
Outline

- Motivation
- 2 Lattice setup
- Oata analysis
- Model average and final results
- Conclusions and outlook

Excited-state analysis

- Cannot construct exact interpolating operator for the proton (any hadron) on the lattice
- All possible states with the same quantum numbers contribute
- Effect of heavier excited states suppressed exponentially with the distance between operators in Euclidean time
- For baryons, the relative statistical noise grows also exponentially with the source-sink separation

$$t_{\rm sep} = y_0 - x_0$$



Excited-state analysis: summation method

- Explicit treatment of the excited-state systematics required
- Summation of the effective form factors over the operator insertion time,

$$S_{E,M}(Q^2; t_{\text{sep}}) = \sum_{t=t_{\text{skip}}}^{t_{\text{sep}}-t_{\text{skip}}} G_{E,M}^{\text{eff}}(Q^2; t, t_{\text{sep}}), \quad t_{\text{skip}} = 2a$$
 (4)

- Parametrically suppresses the effects of excited states ($\propto e^{-\Delta t_{\rm sep}}$ instead of $\propto e^{-\Delta t}$, $e^{-\Delta (t_{\rm sep}-t)}$ [Δ : energy gap to lowest-lying excited state]) \rightarrow "summation method"
- ullet For $t_{
 m sep} o \infty$, the slope as a function of $t_{
 m sep}$ is given by the ground-state form factor,

$$S_{E,M}(Q^2; t_{\text{sep}}) \xrightarrow{t_{\text{sep}} \to \infty} C_{E,M}(Q^2) + \frac{1}{a}(t_{\text{sep}} + a - 2t_{\text{skip}})G_{E,M}(Q^2)$$
 (5)

Excited-state analysis: window average

- ullet Apply summation method with varying starting values $t_{
 m sep}^{
 m min}$ for the linear fit
- Perform a weighted average over $t_{\rm sep}^{\rm min}$, where the weights are given by a smooth window function⁶,

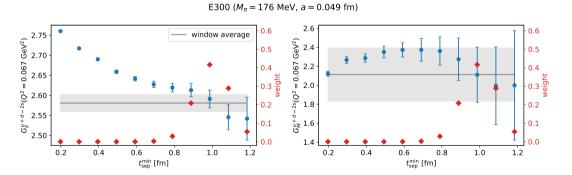
$$\hat{G} = \frac{\sum_{i} w_{i} G_{i}}{\sum_{i} w_{i}}, \qquad w_{i} = \tanh \frac{t_{i} - t_{w}^{\text{low}}}{\Delta t_{w}} - \tanh \frac{t_{i} - t_{w}^{\text{up}}}{\Delta t_{w}}, \tag{6}$$

where t_i is the value of $t_{
m sep}^{
m min}$ in the i-th fit, $t_w^{
m low}=0.9\,{
m fm}$, $t_w^{
m up}=1.1\,{
m fm}$ and $\Delta t_w=0.08\,{
m fm}$

⁶Djukanovic et al. 2022 [PRD **106**, 074503]; Agadjanov et al. 2023 [PRL **131**, 261902].

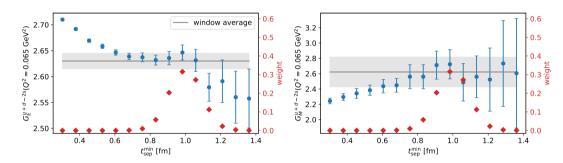
Excited-state analysis: window average

- ullet Apply summation method with varying starting values $t_{
 m sep}^{
 m min}$ for the linear fit
- ullet Perform a weighted average over $t_{
 m sep}^{
 m min}$, where the weights are given by a smooth window function 6



⁶Djukanovic et al. 2022 [PRD **106**, 074503]; Agadjanov et al. 2023 [PRL **131**, 261902].

Excited-state analysis: window average



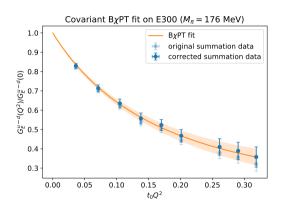
- Reliable detection of the plateau with reduced human bias (same window on all ensembles)
- Conservative error estimate

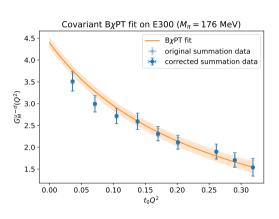
Direct Baryon χ PT fits

- $\bullet \ \langle r^2 \rangle = -\frac{6}{G(0)} \left. \frac{\partial G(Q^2)}{\partial Q^2} \right|_{Q^2=0} \text{, } \mu_M = G_M(0) \Rightarrow \text{ parametrize } Q^2 \text{-dependence of FFs}$
- Combine this with the chiral, continuum, and infinite-volume extrapolation
- Use expressions from covariant chiral perturbation theory 7 to perform a simultaneous fit to the pion-mass, Q^2 -, lattice-spacing, and finite-volume dependence of the form factors
- ullet Include contributions from the ho (ω and ϕ) mesons in the isovector (isoscalar) channel
- Reconstruct proton and neutron observables from separate fits to the isovector and isoscalar form factors
- Perform fits with various cuts in M_{π} and Q^2 , as well as with different models for the lattice-spacing and finite-volume dependence, in order to estimate systematic uncertainties
- ullet Large number of degrees of freedom \Rightarrow improved stability against lowering the Q^2 -cut

⁷Bauer, Bernauer, and Scherer 2012 [PRC **86**, 065206].

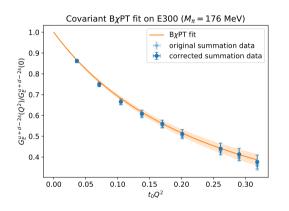
Q^2 -dependence of the isovector form factors on E300

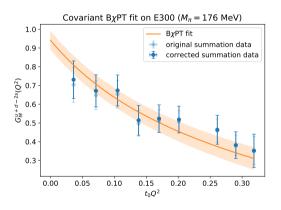




- Direct B χ PT fit describes data very well
- Reduced error due to the inclusion of several ensembles in one fit

Q^2 -dependence of the isoscalar form factors on E300





Zemach and Friar radii from the lattice

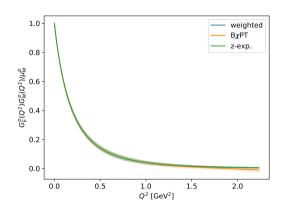
- \bullet B $\chi{\rm PT}$ including vector mesons only trustworthy for $Q^2\lesssim 0.6\,{\rm GeV^2}$
- Tail of the integrands suppressed: contribution of the form factors above $0.6\,{\rm GeV^2}$ to r_Z^p less than $0.9\,\%$, to $\langle r_E^3 \rangle_{(2)}^p$ less than $0.3\,\%$
- Extrapolate B χ PT fit results using a z-expansion⁸ ansatz
- Incorporate the large- Q^2 constraints on the form factors⁹
- For integration, smoothly replace B χ PT parametrization of the form factors by z-expansion-based extrapolation ($\Delta Q_w^2=0.1\,{\rm GeV^2}$),

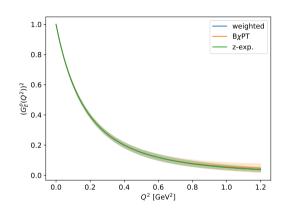
$$F(Q^2) = \frac{1}{2} \left[1 - \tanh\left(\frac{Q^2 - Q_{\text{cut}}^2}{\Delta Q_w^2}\right) \right] F^{\chi}(Q^2) + \frac{1}{2} \left[1 + \tanh\left(\frac{Q^2 - Q_{\text{cut}}^2}{\Delta Q_w^2}\right) \right] F^{z}(Q^2), \tag{7}$$

where $F(Q^2) \equiv G_E(Q^2) G_M(Q^2)/\mu_M$ for r_Z and $F(Q^2) \equiv G_E^2(Q^2)$ for $\langle r_E^3 \rangle_{(2)}$, resp.

⁸Hill and Paz 2010 [PRD **82**, 113005]; ⁹Lepage and Brodsky 1980 [PRD **22**, 2157]; Lee, Arrington, and Hill 2015 [PRD **92**, 013013].

Integrands for the Zemach radius and third Zemach moment of the proton





- B χ PT clearly not reliable for large Q^2
- ullet z-expansion agrees well with B χ PT parametrization in region where it is fitted

Outline

- Motivation
- 2 Lattice setup
- Oata analysis
- 4 Model average and final results
- Conclusions and outlook

Model average

 Perform a weighted average over the results of all fit variations, using weights derived from the Akaike Information Criterion¹⁰,

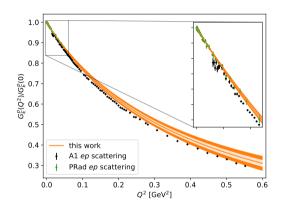
$$w_i = \exp\left(-\frac{1}{2}\text{BAIC}_i\right) / \sum_j \exp\left(-\frac{1}{2}\text{BAIC}_j\right), \quad \text{BAIC}_i = \chi^2_{\text{noaug,min},i} + 2n_{f,i} + 2n_{c,i},$$
(8)

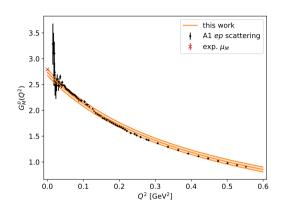
where n_f is the number of fit parameters and n_c the number of cut data points

- Strongly prefers fits with low n_c , i.e., the least stringent cut in $Q^2 \Rightarrow$ apply a flat weight over the different Q^2 -cuts to ensure strong influence of our low-momentum data
- Determine the final cumulative distribution function (CDF) from the weighted sum of the bootstrap distributions¹¹
- ullet Quote median of this CDF together with the central $68\,\%$ percentiles

¹⁰Akaike 1974 [IEEE Trans. Autom. Contr. **19**, 716]; Neil and Sitison 2022 [arXiv:2208.14983]; ¹¹Borsányi et al. 2021 [Nature **593**, 51].

Model-averaged proton form factors at the physical point

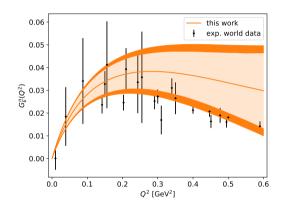


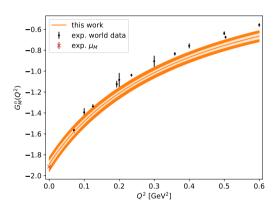


- \bullet Slope of the electric form factor closer to that of PRad¹² than to that of A1¹³
- Good agreement with A1 for the magnetic form factor

¹²Xiong et al. 2019 [Nature **575**, 147]; ¹³Bernauer et al. 2014 [PRC **90**, 015206].

Model-averaged neutron form factors at the physical point

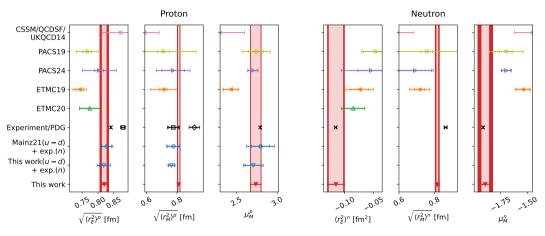




(Mostly) compatible with the collected experimental world data¹⁴ within our errors

¹⁴Ye et al. 2018 [PLB **777**, 8].

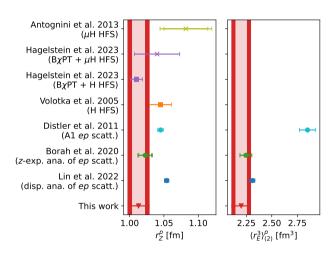
Electromagnetic radii and magnetic moments



Magnetic moments reproduced, low value for $\sqrt{\langle r_E^2 \rangle^p}$ clearly favored, $\sqrt{\langle r_M^2 \rangle^p}$ agrees with A1

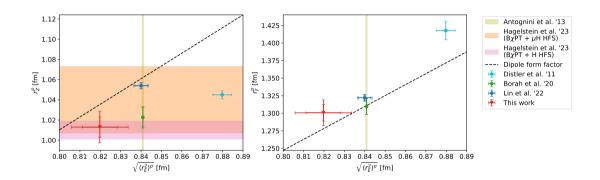
Zemach radii and third Zemach moments

- r_Z^p : low value favored, but agrees within 2σ with most other determinations (except for dispersive analysis)
- $\langle r_E^3 \rangle_{(2)}^p$: low value favored, good agreement with dispersive analysis, clear tension with A1
- Our estimates are $\sim 80\,\%$ and $\sim 95\,\%$, respectively, correlated with electromagnetic radii
- Low results for r_Z^p and $\langle r_E^3 \rangle_{(2)}^p$ expected, no independent puzzle



ullet Neutron results agree with z-expansion analysis of world en-scattering data, larger error

Correlations between different proton radii



- Large correlation of Zemach and Friar radii with electromagnetic radii also in experiment
- Lattice results seem to confirm trend observed in data-driven evaluations

Outline

- Motivation
- 2 Lattice setup
- Oata analysis
- Model average and final results
- **6** Conclusions and outlook

Conclusions

- Determination of the electromagnetic form factors of the proton and neutron from lattice QCD including connected and disconnected contributions, as well as a full error budget
- Magnetic moments of the proton and neutron agree well with the experimental values
- Small electric and magnetic radii of the proton favored
- Accordingly also small values for Zemach and Friar radii of the proton favored (large correlation with electromagnetic radii)
- Good agreement with dispersive approaches for electric properties of the proton (electric and Friar radii), tension regarding its magnetic properties (magnetic and Zemach radii)
- Competitive errors, in particular for the magnetic radii
- Further investigations required, in particular for the proton's magnetic and Zemach radii

Backup slides

From correlation functions to form factors

- Average over the forward- and backward-propagating nucleon and over x-, y-, and z-polarization for the disconnected part
- Calculate the ratios

$$R_{V_{\mu}}(\mathbf{q}; t_{\text{sep}}, t) = \frac{C_{3,V_{\mu}}(\mathbf{q}; t_{\text{sep}}, t)}{C_{2}(\mathbf{0}; t_{\text{sep}})} \sqrt{\frac{\bar{C}_{2}(\mathbf{q}; t_{\text{sep}} - t)C_{2}(\mathbf{0}; t)C_{2}(\mathbf{0}; t_{\text{sep}})}{C_{2}(\mathbf{0}; t_{\text{sep}} - t)\bar{C}_{2}(\mathbf{q}; t)\bar{C}_{2}(\mathbf{q}; t_{\text{sep}})}},$$
(9)

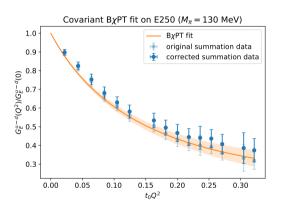
where
$$t_{\rm sep}=y_0-x_0$$
, $t=z_0-x_0$, and $\bar{C}_2(\mathfrak{q};t_{\rm sep})=\sum_{\tilde{\mathbf{q}}\in\mathfrak{q}}C_2(\tilde{\mathbf{q}};t_{\rm sep})\Big/\sum_{\tilde{\mathbf{q}}\in\mathfrak{q}}1$

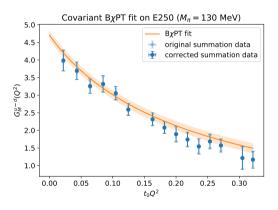
• At zero sink momentum, the effective form factors can be computed from the ratios as

$$G_E^{\text{eff}}(Q^2; t_{\text{sep}}, t) = \sqrt{\frac{2E_{\mathbf{q}}}{m + E_{\mathbf{q}}}} R_{V_0}(\mathbf{q}; t_{\text{sep}}, t), \tag{10}$$

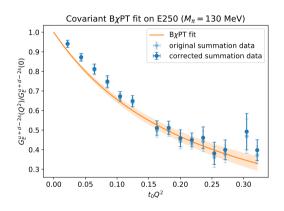
$$G_M^{\text{eff}}(Q^2; t_{\text{sep}}, t) = \sqrt{2E_{\mathbf{q}}(m + E_{\mathbf{q}})} \frac{\sum_{j,k} \epsilon_{ijk} q_k \operatorname{Re} R_{V_j}^{\Gamma_i}(\mathbf{q}; t_{\text{sep}}, t)}{\sum_{j \neq i} q_j^2}$$
(11)

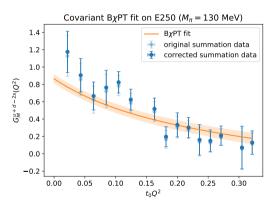
Q^2 -dependence of the isovector form factors on E250



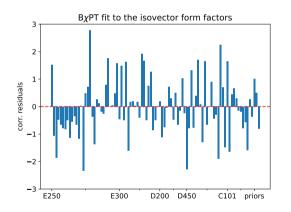


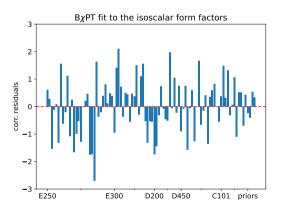
Q^2 -dependence of the isoscalar form factors on E250



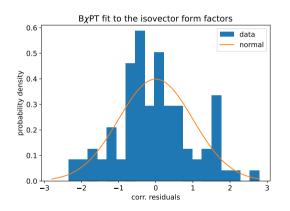


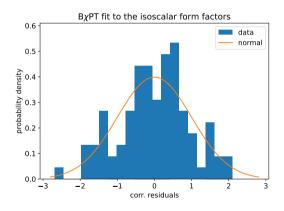
Residuals of the B χ PT fits



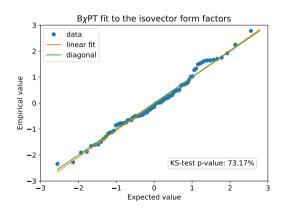


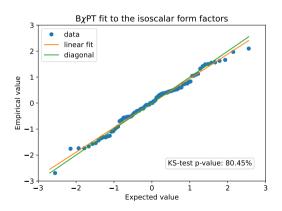
Histograms





Q-Q plots





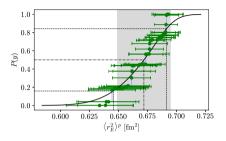
Disambiguating the statistical and systematic uncertainties

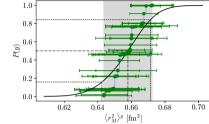
- Scale the statistical variances of the individual fit results by a factor of $\lambda=2$
- Repeat the model averaging procedure
- Assumptions:
 - Above rescaling only affects the statistical error of the averaged result
 - Statistical and systematic errors add in quadrature
- Contributions of the statistical and systematic errors to the total error,

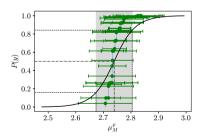
$$\sigma_{\rm stat}^2 = \frac{\sigma_{\rm scaled}^2 - \sigma_{\rm orig}^2}{\lambda - 1}, \qquad \sigma_{\rm syst}^2 = \frac{\lambda \sigma_{\rm orig}^2 - \sigma_{\rm scaled}^2}{\lambda - 1}$$
 (12)

• Consistency check: results are almost independent of λ (if it is chosen not too small)

CDFs of the electromagnetic radii and magnetic moment of the proton







Final results

Observable	Isovector	Isoscalar	Proton	Neutron
$\langle r_E^2 angle \; [{ m fm}^2]$	0.785(22)(26)	0.554(18)(13)	0.672(14)(18)	-0.115(13)(7)
$\langle r_M^{\overline{2}} angle [{ m fm}^2]$	0.663(11)(8)	0.657(30)(31)	0.658(12)(8)	0.667(11)(16)
μ_M	4.62(10)(7)	2.47(11)(10)	2.739(63)(18)	-1.893(39)(58)
r_Z [fm]	_	_	1.013(10)(12)	-0.0411(56)(40)
$\langle r_E^3 angle_{(2)}$ [fm 3]	_	_	2.200(60)(71)	0.0078(20)(12)

z-expansion

- ullet z-expansion: model-independent description of the Q^2 -dependence of the form factors
- Map domain of analyticity of the form factors onto the unit circle,

$$z(Q^2) = \frac{\sqrt{\tau_{\text{cut}} + Q^2} - \sqrt{\tau_{\text{cut}} - \tau_0}}{\sqrt{\tau_{\text{cut}} + Q^2} + \sqrt{\tau_{\text{cut}} - \tau_0}},$$
(13)

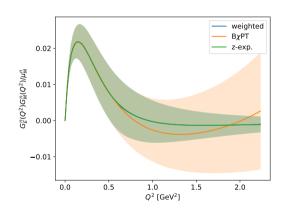
where $\tau_{\rm cut}=4M_{\pi,{\rm phys}}^2$, and we employ $\tau_0=0$

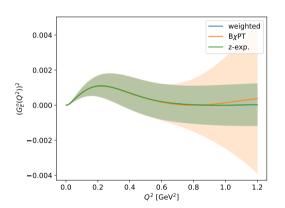
Expand the form factors as

$$G_E^{p,n}(Q^2) = \sum_{k=0}^m a_k^{p,n} z(Q^2)^k, \quad G_M^{p,n}(Q^2) = \sum_{k=0}^m b_k^{p,n} z(Q^2)^k$$
 (14)

• We fix $G_E^p(0)=a_0^p=1$ and $G_E^n(0)=a_0^n=0$, respectively, use m=9, and incorporate the 4 sum rules for each form factor

Integrands for the Zemach radius and third Zemach moment of the neutron

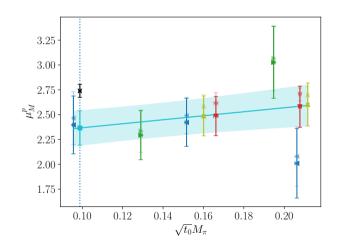




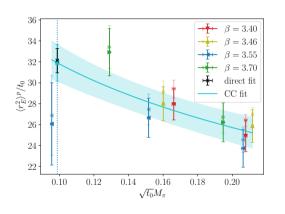
z-expansion agrees also here well with B χ PT parametrization in region where it is fitted

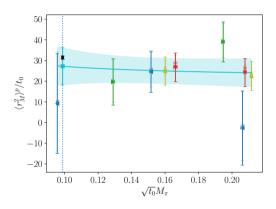
Crosscheck of direct fits with z-expansion: proton magnetic moment

- Use m=2 and no sum rules (focus on low-momentum region)
- Magnetic moment significantly smaller than direct fits which are compatible with experiment
- Direct fits use more data in one fit ⇒ increased stability against statistical fluctuations



Crosscheck of direct fits with z-expansion: proton electromagnetic radii





Radii in good agreement with direct fits, albeit with significantly larger errors