Nuclear recoil effect without expansion in Zα

Vladimir A. Yerokhin

Max-Planck-Institut für Kernphysik, Heidelberg

µASTI, June 14, 2024, Zurich

- □ Approach without expansion in $Z\alpha$ => electronic and muonic atoms can be considered on the same footing.
- However, for electronic atoms the point-nucleus limit is (generally) a good approximation; for muonic atoms it is NOT.
- Limitation: we assume that the nucleus is described by form-factors == elastic part of nuclear effects.
- Applicable for relatively heavy nuclei, for which one cannot calculate both elastic and inelastic nuclear effects on the same footing.

Two-body atom: nonrelativistic picture

Energy levels from Schrödinger equation

$$E_{nl} = -\frac{m}{1+\frac{m}{M}} \frac{(Z\alpha)^2}{2n^2} + \left(\frac{m}{1+\frac{m}{M}}\right)^3 \frac{2(Z\alpha)^4}{3n^3} r_C^2 \,\delta_{l,0}$$

$$E_{\rm pnt} = -m \, \frac{(Z\alpha)^2}{2n^2} \,,$$

$$\delta E_{\rm fns} = m^3 \, \frac{2(Z\alpha)^4}{3n^3} \, r_C^2 \, \delta_{l,0} \,,$$

$$\delta E_{\rm rec,pnt} = \frac{m^2}{M} \, \frac{(Z\alpha)^2}{2n^2} \,,$$

$$\delta E_{\rm rec,fns} = -3 \, \frac{m^4}{M} \, \frac{2(Z\alpha)^4}{3n^3} \, r_C^2 \, \delta_{l,0}$$

Point-nucleus nonrecoil energy

Finite nuclear size

Recoil point nucleus

Recoil finite nuclear size

Two-body atom: leading relativistic correction

Point-nucleus nonrecoil energy:

known analytically (Dirac energy),

Finite nuclear size:

Recoil point nucleus:

can be obtained numerically from Dirac equation,

can be obtained from Breit equation,

Recoil finite nuclear size:

CANNOT be obtained from Breit equation.

[Shabaev et al. PRA 57, 4235 (1998)]: Recoil finite nuclear size within Breit approximation contains terms of order $(m^3/M) (Z\alpha)^3 r_c$, which are numerically dominant but are exactly cancelled by the QED contribution.

Recoil with finite nuclear size can be addressed only within QED

Nuclear recoil to all orders in $Z\alpha$, point nucleus

$$E_{\rm rec} = \frac{i}{2\pi M} \int_{-\infty}^{\infty} d\omega \sum_{n} \frac{1}{\varepsilon_a + \omega - \varepsilon_n (1 - i0)} \left\langle a \right| \vec{p} - \vec{D}(\omega) \left| n \right\rangle \cdot \left\langle n \right| \vec{p} - \vec{D}(\omega) \left| a \right\rangle$$

where

$$D^{j}(\omega) = -4\pi Z \alpha \,\alpha^{i} \left(\delta^{ij} \,\mathcal{D}(\omega, r) + \frac{\nabla^{i} \nabla^{j}}{\omega^{2}} \left[\mathcal{D}(\omega, r) - \mathcal{D}(0, r) \right] \right)$$

and

 $\mathcal{D}(\omega, r) = -rac{e^{i|\omega|r}}{4\pi r}$

Transverse part of the photon propagator in the Coulomb gauge

Derivation:

V. M. Shabaev, Theor. Math. Phys. 63, 588 (1985) K. Pachucki and H. Grotch, Phys. Rev. A 51, 1854 (1995)

Numerical calculations:

A.N. Artemyev, V.M. Shabaev, V.A. Yerokhin, PRA 52, 1884 (1995)

Point nucleus => results are not applicable for muonic atoms

Nuclear recoil to all orders in $Z\alpha$, extended nucleus

The generalized photon propagator for one extended-size vertex

Point nucleus

Extended-size nucleus

For the exponential model of the nuclear charge distribution

$$\rho(r) = \frac{\lambda^3}{8\pi} e^{-\lambda r} , \quad \rho(\vec{k}^2) = \frac{\lambda^4}{(\lambda^2 + \vec{k}^2)^2}$$

we obtain

$$\mathcal{D}(\omega,r) = -\frac{1}{4\pi} \left[\frac{e^{i|\omega|r}}{r} - \frac{e^{i\sqrt{\omega^2 - \lambda^2}r}}{r} - \frac{i\lambda^2}{2} \frac{e^{i\sqrt{\omega^2 - \lambda^2}r}}{\sqrt{\omega^2 - \lambda^2}} \right]$$

Formulas for nuclear recoil become valid for the extended-nucleus case if we use the generalized photon propagator

K. Pachucki and V.A. Yerokhin, PRL 130, 053002 (2023)

Nuclear recoil to all orders in $Z\alpha$, evaluation #1

$$E_{\rm rec} = \frac{i}{2\pi M} \int_{-\infty}^{\infty} d\omega \sum_{n} \frac{1}{\varepsilon_{a} + \omega - \varepsilon_{n}(1 - i0)} \left[\begin{array}{c} \langle a | \vec{p} | n \rangle \cdot \langle n | \vec{p} | a \rangle \\ &- 2 \langle a | \vec{p} | n \rangle \cdot \langle n | \vec{D}(\omega) | a \rangle \\ &+ \langle a | \vec{D}(\omega) | n \rangle \cdot \langle n | \vec{D}(\omega) | a \rangle \end{array} \right] = E_{CC} + E_{CB} + E_{BB}$$

$$\frac{i}{2\pi} \int_{-\infty}^{\infty} d\omega \, \frac{1}{\varepsilon_a + \omega - \varepsilon_n (1 - i0)} = \frac{i}{2\pi} \, \text{v.p.} \int_{-\infty}^{\infty} d\omega \, \frac{1}{\varepsilon_a + \omega - \varepsilon_n} + \frac{1}{2} \operatorname{sign}(\varepsilon_n)$$

$$E_{CC} = \frac{1}{2M} \sum_{n} \operatorname{sign}(\varepsilon_{n}) \langle a | \vec{p} | n \rangle \cdot \langle n | \vec{p} | a \rangle = \langle a | \frac{\vec{p}^{2}}{2M} | a \rangle - \frac{1}{M} \sum_{\varepsilon_{n} < 0} \langle a | \vec{p} | n \rangle \cdot \langle n | \vec{p} | a \rangle$$

Nuclear recoil to all orders in $Z\alpha$, evaluation #2

$$E_{BB} = \frac{i}{2\pi M} \int_{-\infty}^{\infty} d\omega \sum_{n} \frac{1}{\varepsilon_{n} + \omega - \varepsilon_{n}(1 - i0)} \langle a | \vec{D}(\omega) | n \rangle \cdot \langle n | \vec{D}(\omega) | a \rangle$$

Wick rotation of integration contour

$$E_{BB} = \frac{1}{M} \sum_{0 < \varepsilon_n \le \varepsilon_a} a_n \langle a | \vec{D}(\varepsilon_a - \varepsilon_n) | n \rangle \langle n | \vec{D}(\varepsilon_a - \varepsilon_n) | a \rangle$$
$$- \frac{1}{\pi M} \int_0^\infty d\omega \sum_n \frac{\varepsilon_a - \varepsilon_n}{(\varepsilon_a - \varepsilon_n)^2 + \omega^2} \langle a | \vec{D}(i\omega) | n \rangle \langle n | \vec{D}(i\omega) | a \rangle$$

Results for muonic atoms

TABLE I. Nuclear recoil correction to the energies of muonic atoms, in keV.

Atom	r_C [fm]	State	$E_{ m rec}$	Previous [†]
⁸⁹ 40Zr	4.2706	$1s_{1/2}$	3.499	3.21(15)
		$2s_{1/2}$	1.146	1.09(2)
		$2p_{1/2}$	1.432	1.42(1)
		$2p_{3/2}$	1.414	1.40(1)
		$3s_{1/2}$	0.552	0.53(1)
		$3p_{1/2}$	0.639	0.64
		$3p_{3/2}$	0.634	0.63
		$3d_{3/2}$	0.641	0.64
		$3d_{5/2}$	0.638	0.63
¹⁴⁷ ₆₂ Sm	4.9892	$1s_{1/2}$	3.438	2.88(8)
		$2s_{1/2}$	1.402	1.26(5)
		$2p_{1/2}$	1.947	1.92(5)
		$2p_{3/2}$	1.930	1.92(4)
		$3s_{1/2}$	0.719	0.66(2)
		$3p_{1/2}$	0.890	0.88(1)
		$3p_{3/2}$	0.885	0.88(1)
		$3d_{3/2}$	0.936	0.92(1)
		$3d_{5/2}$	0.926	0.91(1)
²⁰⁵ ₈₃ Bi	5.5008	$1s_{1/2}$	3.179	2.41(6)
		$2s_{1/2}$	1.554	1.33(4)
		$2p_{1/2}$	2.212	2.12(3)
		$2p_{3/2}$	2.226	2.26(1)
		$3s_{1/2}$	0.842	0.75(3)
		$3p_{1/2}$	1.062	1.02(3)
		$3p_{3/2}$	1.065	1.03(3)
		$3d_{3/2}$	1.199	1.19(2)
		$3d_{5/2}$	1.180	1.17(2)

V.A. Yerokhin and N.S. Oreshkina , PRA 108, 052824 (2023)

Results for muonic atoms: recoil with finite nuclear size

Nuclear recoil correction for Z = 90 and 1s state, as a function of the nuclear radius

Finite nuclear size reduces the recoil effect by an order of magnitude

V.A. Yerokhin and N.S. Oreshkina , PRA 108, 052824 (2023)

Results for electronic atoms: recoil with finite nuclear size

K. Pachucki and V.A. Yerokhin, PRL 130, 053002 (2023)

Outlook

All-order calculations of other nuclear recoil effects are possible:

- Nuclear recoil + vacuum polarization
- Radiative recoil
- □ Second-order nuclear recoil (of order m²/M²)
- Nuclear recoil for hyperfine splitting