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Two-body systems

QED of two-body systems

The highest precision for theoretical determination of atomic
spectra can be achieved for two-body systems

Combined with precise experimental data we may obtain very
accurate values of fundamental constants or constraints on
physics beyond the Standard Model

Two-body systems like hydrogen, heavy ions, muonium,
positronium, He+ and even more challenging like antiprotonic
hydrogen and helium can be available experimentally
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Two-body systems

One may replace proton or electron in hydrogenlike atoms by
other particles such as alpha, pion, positron, muon or
antiproton

For highly excited rotational states the strong interaction
effects are negligible

The only limiting factor on theory would be uncertainty of
Rydberg constant, mass ratio, magnetic moment anomaly,
polarizability
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Two-body systems

For obtaining theoretical prediction for atomic spectra we use
Nonrelativistic QED (NRQED), perturbative method in which
the energy is expressed as power series

E = E (2) + E (4) + E (5) + E (6) + E (7) + O(α8)

with E (j) being of the order αj

Each term can be expressed as an expectation value of some
effective operator with nonrelativistic wave function

E (2) ≡ E0 = −(Zα)2 µ

2n2
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Two-body systems

Leading relativistic correction E (4) is expectation value of
Breit Hamiltonian

E (4) =µ3(Zα)4
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for l > 0, where g = 2(1 + κ)



Higher-order QED corrections in two-body systems

Higher-order QED contribution

Contribution E (5) contains leading QED corrections, is
partially accounted for in the g -factor and is known in the
literature

Next-order correction is a higher-order QED contribution E (6)

which is a sum of two parts

E (6) = ⟨H(6)⟩+ ⟨H(4) 1

(E0 − H0)′
H(4)⟩

First-order operator H(6) =
∑9

i=0 δHi is derived in the
NRQED framework
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Higher-order QED contribution

For S states and two spin-1/2 particles of arbitrary masses the
result was obtained recently by G. Adkins et al., Phys. Rev.
Lett. 130, 023004 (2023)

For l > 0 the result can be written in a form

E (6) =
µ (Zα)6

l(l − 1)(2l − 1)(2l + 1)(2l + 3)

[
A+ B L⃗ · s⃗1 + C L⃗ · s⃗2

+ D s⃗1 · s⃗2 + F s i1s
j
2 (L
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]

For l > 1 we performed the calculation in Phys. Rev. A 106,
042804 (2022)
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Higher-order QED contribution

Coefficients A− F are in general quite complicated
expressions, the result is valid for either spin 0 or 1/2,
pointlike or hadronic particles and arbitrary masses

In special cases (hydrogen, positronium) the results are in
agreement with known results in the literature (Dirac equation
and leading recoil correction, Klein-Gordon equation)

Derived formulas can be applied to various exotic atoms
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Higher-order QED contribution

Recently we extended the calculation also to P states, Phys.
Rev. A 109, 022819 (2024)

For P states there is nonvanishing local interaction
proportional to p⃗ δ3(r) p⃗ and the results depend also on
charge and magnetic radii of both particles

For instance, in the case of hydrogen atom in nonrecoil limit
the result is
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Higher-order QED contribution

We found out that our results for P states and the general
result with l set to l = 1 differ in the point particle limit

This affects the results for positronium atom, leading to
discrepancy in theoretical results

This difference is

δEpos = E (6) − E
(6)
G
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Higher-order QED contribution

For particular positronium states this ammounts to

δEpos(s = 0, j = 1) = 0

δEpos(s = 1, j = 0) =
m (Zα)6

64

(
1

n3
− 1

n5

)
δEpos(s = 1, j = 1) = 0

δEpos(s = 1, j = 2) = 0

The corresponding numerical change is too small to affect
comparison with experiment
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Higher-order QED contribution

Application of general formulas: 2P fine structure in µHe ion

Leading contribution is

E
(4)
fs =

µ3(Zα)4

32
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m2
µ

+
gµ

mNmµ

)
Correction of order α6 is obtained for both spinless and
spin-1/2 nucleus

For this correction we may set gµ = 2 and omit QED
corrections to rE and rM of the muon
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Higher-order QED contribution

For spinless nucleus the fine structure of 2P state is

E
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For spin-1/2 nucleus it is
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Higher-order QED contribution

contribution µ3He+ µ4He+

E
(4)
fs 144.510 95 145.898 24

E
(4)
fs,vp 0.269 81 0.275 65

E
(6)
fs 0.004 05 0.007 64

Efs 144.785(3) 146.182(3)
Refs a,b 144.785(5) 146.181(5)
Refs c,d 144.763(114) 146.047(96)

a S. G. Karshenboim, E. Yu. Korzinin, V. A. Shelyuto, and V. G.
Ivanov, Phys. Rev. A 96, 022505 (2017);

b E. Yu. Korzinin, V. A. Shelyuto, V. G. Ivanov, and S. G.
Karshenboim, Phys. Rev. A 97, 012514 (2018);

c K. Schuhmann et al., arXiv:2305.11679;
d R. Pohl et al., Science 353, 669 (2016)
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Higher-order QED contribution

Our results are in agreement with previous calculations and
with experimental results. The observed agreement supports
the determination of the nuclear charge radii reported in these
works

Additionaly, we have checked our results for nuclear recoil
correction for muonic atoms by the all-order calculation (talk
of Vladimir Yerokhin)
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Higher-order radiative corrections

E (7) radiative corrections

To improve theoretical accuracy further we may include also
contribution of order α7

It is given by the expression

E (7) = EL + ⟨H(7)⟩+ 2 ⟨H(4) 1

(E0 − H0)′
H(5)⟩

We calculated one-loop radiative corrections for l > 0 states
of two-body systems with spin-1/2 particles, with pointlike or
hadronic nucleus, and arbitrary masses
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Higher-order radiative corrections

The contribution E
(7)
rad can be expressed as

E
(7)
rad =

µα(Zα)6

π l(l − 1)(2l − 1)(2l + 1)(2l + 3)

×
[
A+ B L⃗ · s⃗1 + C L⃗ · s⃗2 + D s⃗1 · s⃗2 + F s i1s

j
2 (L
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]

General formulas again complicated but specific cases are
more compact

Preliminary unpublished results
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Higher-order radiative corrections

For hydrogen P states in nonrecoil limit it is

E
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In agreement with work U. D. Jentschura, A. Czarnecki, and
K. Pachucki, Phys. Rev. A 72, 062102 (2005) in pointlike limit
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Higher-order radiative corrections

For positronium P states the results are
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Higher-order radiative corrections
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Higher-order radiative corrections

If we set both particles to be electrons then we may compare
results for effective operators with two-body electron-electron
part of our helium calculation for triplet states, Phys. Rev. A
103, 012803 (2021)

We found a mistake in our helium calculations, however it
ammounts only to few kHz

Still no explanation for discrepancy in ionization energies of
helium triplet states
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Conclusions

Summary

The most precise theoretical predictions can be obtained from
two-body systems

We obtained formulas valid for arbitrary pointlike or hadronic
particles with spin either zero or 1/2, and l > 0

We extended the calculation also to α7 radiative correction

In the future we also have to account for the photon-exchange
contribution of the order α7

For rotational states with n ≈ l + 1 the effective coupling
constant is Zα/n so we can apply these results to heavy ions
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Conclusions

Thank you for your attention!
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