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Higher-order QED corrections in two-body systems

L Two-body systems

QED of two-body systems

m The highest precision for theoretical determination of atomic
spectra can be achieved for two-body systems

m Combined with precise experimental data we may obtain very
accurate values of fundamental constants or constraints on
physics beyond the Standard Model

m Two-body systems like hydrogen, heavy ions, muonium,
positronium, He™ and even more challenging like antiprotonic
hydrogen and helium can be available experimentally



Higher-order QED corrections in two-body systems
LTwo-bc»dy systems

m One may replace proton or electron in hydrogenlike atoms by
other particles such as alpha, pion, positron, muon or
antiproton

m For highly excited rotational states the strong interaction
effects are negligible

m The only limiting factor on theory would be uncertainty of
Rydberg constant, mass ratio, magnetic moment anomaly,
polarizability
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LTwo-bc»dy systems

m For obtaining theoretical prediction for atomic spectra we use
Nonrelativistic QED (NRQED), perturbative method in which
the energy is expressed as power series

E=E® 4+ E® 4+ EG) 4 EO®) 4 ED 4 0(a?)

with EU) being of the order of

m Each term can be expressed as an expectation value of some
effective operator with nonrelativistic wave function
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LTwo-bc»dy systems

m Leading relativistic correction E(*) is expectation value of
Breit Hamiltonian
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for I > 0, where g = 2(1 + k)
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LHigher—order QED contribution

m Contribution E(®) contains leading QED corrections, is
partially accounted for in the g-factor and is known in the
literature

m Next-order correction is a higher-order QED contribution E(©)
which is a sum of two parts
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m First-order operator H(®) = Z?:o 0H; is derived in the
NRQED framework
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LHigher—order QED contribution

m For S states and two spin-1/2 particles of arbitrary masses the
result was obtained recently by G. Adkins et al., Phys. Rev.
Lett. 130, 023004 (2023)

m For / > 0 the result can be written in a form
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m For / > 1 we performed the calculation in Phys. Rev. A 106,
042804 (2022)
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LHigher—order QED contribution

m Coefficients A — F are in general quite complicated
expressions, the result is valid for either spin 0 or 1/2,
pointlike or hadronic particles and arbitrary masses

m In special cases (hydrogen, positronium) the results are in
agreement with known results in the literature (Dirac equation
and leading recoil correction, Klein-Gordon equation)

m Derived formulas can be applied to various exotic atoms
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LHigher—order QED contribution

m Recently we extended the calculation also to P states, Phys.
Rev. A 109, 022819 (2024)

m For P states there is nonvanishing local interaction
proportional to p'63(r) p and the results depend also on

charge and magnetic radii of both particles

m For instance, in the case of hydrogen atom in nonrecoil limit
the result is
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LHigher—order QED contribution

m We found out that our results for P states and the general
result with / set to / = 1 differ in the point particle limit

m This affects the results for positronium atom, leading to
discrepancy in theoretical results

m This difference is
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LHigher—order QED contribution

m For particular positronium states this ammounts to
0Epos(s =0,j=1)=0
. m(Za)® [ 1 1
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m The corresponding numerical change is too small to affect
comparison with experiment
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LHigher—order QED contribution

m Application of general formulas: 2P fine structure in pHe ion

m Leading contribution is
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m Correction of order a® is obtained for both spinless and
spin-1/2 nucleus

m For this correction we may set g, = 2 and omit QED
corrections to rg and ry; of the muon
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LHigher—order QED contribution

m For spinless nucleus the fine structure of 2P state is
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Higher-order QED corrections in two-body systems
LHigher—order QED contribution

contribution p3Het piHe ™
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[ Higher-order QED contribution

m Our results are in agreement with previous calculations and
with experimental results. The observed agreement supports
the determination of the nuclear charge radii reported in these
works

m Additionaly, we have checked our results for nuclear recoil
correction for muonic atoms by the all-order calculation (talk
of Vladimir Yerokhin)
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LHigher—order radiative corrections

E() radiative corrections

m To improve theoretical accuracy further we may include also
contribution of order o'

m It is given by the expression

1
(Eo — Ho)'
m We calculated one-loop radiative corrections for / > 0 states

of two-body systems with spin-1/2 particles, with pointlike or
hadronic nucleus, and arbitrary masses

ED = + (HDYy 4+ 2(H® H®))
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L Higher-order radiative corrections

m The contribution Egg1 can be expressed as
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m General formulas again complicated but specific cases are
more compact

m Preliminary unpublished results
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L Higher-order radiative corrections

m For hydrogen P states in nonrecoil limit it is
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m In agreement with work U. D. Jentschura, A. Czarnecki, and
K. Pachucki, Phys. Rev. A 72, 062102 (2005) in pointlike limit
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L Higher-order radiative corrections

m For positronium P states the results are
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L Higher-order radiative corrections
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L Higher-order radiative corrections

m If we set both particles to be electrons then we may compare
results for effective operators with two-body electron-electron
part of our helium calculation for triplet states, Phys. Rev. A
103, 012803 (2021)

m We found a mistake in our helium calculations, however it
ammounts only to few kHz

m Still no explanation for discrepancy in ionization energies of
helium triplet states
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L Conclusions

Summary

m The most precise theoretical predictions can be obtained from
two-body systems

m We obtained formulas valid for arbitrary pointlike or hadronic
particles with spin either zero or 1/2, and / > 0

m We extended the calculation also to o’ radiative correction

m In the future we also have to account for the photon-exchange
contribution of the order o'

m For rotational states with n ~ / + 1 the effective coupling
constant is Za/n so we can apply these results to heavy ions
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L Conclusions

Thank you for your attention!
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