Muonic Atom Spectroscopy Theory Initiative

Aldo Antognini

 μ ASTI, Zurich 2024

Steering Committee

Aldo Antognini

Carl Carlson

Franziska Hagelstein

Paul Indelicato

Krzysztof Pachucki

Vladimir Pascalutsa

Challenges of the bound-state systems

PSI

E | H

Many contributions and several expansions

- ▶ Radiative corrections
- Relativistic corrections
- Binding effects
- ▶ Recoil corrections
- Nuclear structure corrections

Aldo Antognini

We (CREMA collaboration) performed theory compilations, but

Challenges

Theorist have different approaches

- Many theorist do not compare their results to each other
- ▶ How to add up the various contributions from the various authors?

▶ Double counting, completeness!

We did our own compilations with best effort

We had great fun to discuss with theorist But we are not specialist

Better solution: theory initiative

- Community consensus

Aldo Antognini

 μ ASTI, Zurich 2024

Less prone to mistakes, biases Better evaluation of uncertainties Easier to have a continuous update Expertise from various fields: QED, hadron, nuclear, scattering.....

Example of our (CREMA collaboration) theory compilations.....

Table 1

All known radius-independent contributions to the Lamb shift in μ p from different authors, and the one we selected. Values are in meV. The entry # in the first column refers to Table 1 in Ref. [13]. The "finite-size to relativistic recoil correction" (entry #18 in [13]), which depends on the proton structure, has been shifted to Table 2, together with the small terms #26 and #27, and the proton polarizability term #25. SE: self-energy, VP: vacuum polarization, LBL: light-by-light scattering, Rel: relativistic, NR: non-relativistic, RC: recoil correction.

#	Contribution	Pachucki [10,11]	Nature [13]	Borie-v6 [79]	Indelicato [80]	Our choice	Ref.
1 2 3	NR one-loop electron VP (eVP) Rel. corr. (Breit–Pauli) Rel. one.loop eVP	205.0074 0.0169 ^a	205 0282	205 0282	205 02821	205 02821	[80] Eq. (54)
19	Rel. RC to eVP, $\alpha (Z\alpha)^4$	(incl. in #2) ^b	-0.0041	-0.0041	203.02821	-0.00208°	[80] Eq. (34) [77,78]
4	Two-loop eVP (Källén–Sabry)	1.5079	1.5081	1.5081	1.50810	1.50810	[80] Eq. (57)
5 7 6	One-loop eVP in 2-Coulomb lines α ² (Zα) ⁵ eVP corr. to Källén–Sabry NR three-loop eVP	0.1509 0.0023 0.0053	0.1509 0.00223 0.00529	0.1507 0.00223 0.00529	0.15102 0.00215	0.15102 0.00215 0.00529	[80] Eq. (60) [80] Eq. (62), [87] [87,88]
9 10 New	Wichmann-Kroll, "1:3" LBL Virtual Delbrück, "2:2" LBL "3:1" LBL		-0.00103 0.00135	-0.00102 0.00115 -0.00102	-0.00102	-0.00102 0.00115 -0.00102	[80] Eq. (64), [89] [74,89] [89]
20	μ SE and μ VP	-0.6677	-0.66770	-0.66788	-0.66761	-0.66761	[80] Eqs. (72) + (76)
11 12 21 13 New	Muon SE corr. to $eVP \alpha^2 (Z\alpha)^4$ eVP loop in self-energy $\alpha^2 (Z\alpha)^4$ Higher order corr. to μ SE and μ VP Mixed $eVP + \mu$ VP eVP and μ VP in two Coulomb lines	-0.005(1) -0.001	-0.00500 -0.00150 -0.00169 0.00007	-0.004924 ^d -0.00171 ^g 0.00007	0.00005	-0.00254 f -0.00171 0.00007 0.00005	[85] Eq. (29a) ^e [74,90–92] [86] Eq. (177) [74] [80] Eq. (78)
14 15 16	Hadronic VP $\alpha (Z\alpha)^4 m_r$ Hadronic VP $\alpha (Z\alpha)^5 m_r$ Rad corr. to hadronic VP	0.0113(3)	0.01077(38) 0.000047 -0.000015	0.011(1)		0.01121(44) 0.000047 -0.000015	[93–95] [94,95] [94,95]
17 22 23	Recoil corr. Rel. RC $(Z\alpha)^5$ Rel. RC $(Z\alpha)^6$	0.0575 0.045 0.0003	0.05750 - 0.04497 0.00030	0.0575 —0.04497	0.05747 -0.04497 0.0002475	0.05747 -0.04497 0.0002475	[80] Eq. (88) [80] Eq. (88), [74] [80] Eq. (86)+Tab.II (continued on next page)

Aldo Antognini

 μ ASTI, Zurich 2024

...and the most recent update

Comprehensive theory of the Lamb shift in light muonic atoms

K. Pachucki, V. Lensky, F. Hagelstein, S. S. Li Muli, S. Bacca, and R. Pohl Rev. Mod. Phys. **96**, 015001 – Published 24 January 2024

Section	Order	Correction	$\mu { m H}$	$\mu \mathrm{D}$	μ^{3} He ⁺	$\mu^4 { m He^+}$
III.A	$\alpha(Z\alpha)^2$	eVP ⁽¹⁾	205.007 38	227.634 70	1641.8862	1665.773
III.A	$\alpha^2 (Z\alpha)^2$	$eVP^{(2)}$	1.658 85	1.838 04	13.084 3	13.276 9
III.A	$\alpha^3 (Z\alpha)^2$	$eVP^{(3)}$	0.007 52	0.008 42(7)	0.073 0(30)	0.074 (
III.B	$(Z, Z^2, Z^3)\alpha^5$	Light-by-light eVP	-0.00089(2)	-0.00096(2)	-0.0134(6)	-0.013 6
III.C	$(Z\alpha)^4$	Recoil	0.057 47	0.067 22	0.1265	0.2952
III.D	$\alpha(Z\alpha)^4$	Relativistic with eVP ⁽¹⁾	0.01876	0.021 78	0.5093	0.521
III.E	$\alpha^2 (Z\alpha)^4$	Relativistic with eVP ⁽²⁾	0.00017	0.000 20	0.005 6	0.005
III.F	$\alpha(Z\alpha)^4$	$\mu SE^{(1)} + \mu VP^{(1)}$, LO	-0.66345	-0.76943	-10.6525	-10.9260
III.G	$\alpha(Z\alpha)^5$	μ SE ⁽¹⁾ + μ VP ⁽¹⁾ , NLO	-0.00443	-0.005 18	-0.1749	-0.1797
III.H	$\alpha^2 (Z\alpha)^4$	$\mu VP^{(1)}$ with $eVP^{(1)}$	0.000 13	0.000 15	0.003 8	0.003 9
III.I	$\alpha^2 (Z\alpha)^4$	μ SE ⁽¹⁾ with eVP ⁽¹⁾	-0.00254	-0.00306	-0.0627	-0.0646
III.J	$(Z\alpha)^5$	Recoil	-0.04497	-0.02660	-0.5581	-0.4330
III.K	$\alpha(Z\alpha)^5$	Recoil with $eVP^{(1)}$	0.000 14(14)	0.000 09(9)	0.004 9(49)	0.003 9
III.L	$Z^2 \alpha (Z \alpha)^4$	$nSE^{(1)}$	-0.00992	-0.003 10	-0.0840	-0.0505
III.M	$\alpha^2 (Z\alpha)^4$	$\mu F_{1}^{(2)}, \ \mu F_{2}^{(2)}, \ \mu VP^{(2)}$	-0.001 58	-0.001 84	-0.0311	-0.0319
III.N	$(Z\alpha)^6$	Pure recoil	0.000 09	0.000 04	0.0019	0.0014
III.O	$\alpha(Z\alpha)^5$	Radiative recoil	0.000 22	0.000 13	0.0029	0.0023
III.P	$\alpha(Z\alpha)^4$	hVP	0.011 36(27)	0.013 28(32)	0.224 1(53)	0.2303
III.Q	$\alpha^2(Z\alpha)^4$	hVP with $eVP^{(1)}$	0.000 09	0.000 10	0.002 6(1)	0.0027
IV.A	$(Z\alpha)^4$	r_C^2	$-5.1975r_p^2$	$-6.073 2r_d^2$	$-102.523r_{h}^{2}$	-105.322r
IV.B	$\alpha(Z\alpha)^4$	$eVP^{(1)}$ with r^2	$-0.0282r_{r}^{2}$	$-0.0340r^{2}$	$-0.851r_{1}^{2}$	-0.878r
WC	u(2u)	$VD^{(2)}$ with r_C	$0.000.2 m^2$	$0.000.2 m^2$	$0.000(1)_{h}^{2}$	0.000/
IV.C	$\alpha^{2}(Z\alpha)^{2}$	$eVP^{(2)}$ with r_C^2	$-0.0002r_{p}$	$-0.0002r_d$	$-0.009(1)r_{h}$	-0.009(
V.A	$(Z\alpha)^5$	TPE	0.029 2(25)	1.979(20)	16.38(31)	9.76(4
V.B	$\alpha^2 (Z\alpha)^4$	Coulomb distortion	0.0	-0.261	-1.010	-0.536
V.C	$(Z\alpha)^{6}$	3PE	-0.0013(3)	0.002 2(9)	-0.214(214)	-0.165(
V.D	$\alpha(Z\alpha)^5$	$eVP^{(1)}$ with TPE	0.000 6(1)	0.027 5(4)	0.266(24)	0.158(
V.E	$\alpha(Z\alpha)^5$	$\mu SE^{(1)} + \mu VP^{(1)}$ with TPE	0.000 4	0.002 6(3)	0.077(8)	0.059(
ш	$E_{\rm OFD}$	Point nucleus	206.034 4(3)	228.774 0(3)	1644.348(8)	1668.491(
IV	Cr^2	Finite size	$-5.2259r^{2}$	$-6.1074r^{2}$	$-103.383r_1^2$	-106.209r
V	Ens	Nuclear structure	0.0289(25)	1.7503(200)	15.499(378)	9.276(4
	-145					
	E_L (exp)	Experiment ^a	202.370 6(23)	202.878 5(34)	1258.598(48)	1378.521(
	r _C	This review	0.840 60(39)	2.127 58(78)	1.970 07(94)	1.678 (
	r_C	Previous work ^a	0.840 87(39)	2.125 62(78)	1.97007(94)	1.6782

Aldo Antognini

μ ASTI, Zurich 2024

0(30) 6(6)9(39) 3(54) 7(1) α r_{α}^2 $(1)r_{\alpha}^{2}$ 10) (165)(12) (6) (7) .2 (433) (48) 6(12) 24(83)

Ongoing activities with muons

Laser spectroscopy of the 1S-HFS in μ H

CREMA (PSI) $\delta = 1 \times 10^{-6}$

FAMU (RIKEN-RAL) $\delta = 1 \times 10^{-5}$

do Antognini

1S-2S and 2S-2P transitions in $\mu^+ e$

µASTI, Zurich 2024

Mu-Mass (ETH-PSI) $\delta = 4 \times 10^{-12}$

(J-PARC)

Ongoing activities with muons

muX and Reference Charge Radii

Measurement of muonic x rays from microgram targets to extract absolute charge radii as inputs for APV experiments, laser spectroscopy, nuclear structure investigations

absorber sensor B thermal link thermal bath

 μ ASTI, Zurich 2024

Aldo Antognini

Quartett: charge radii from Lithium to Neon

High-resolution measurements using a metallic magnetic calor $\delta M = \frac{\partial M}{\partial T} \delta T = \frac{\partial M}{\partial T}$

 $\simeq 2,36\sqrt{4k_{\rm B}C_{\rm Abs}}T^2$

One urgent example: 1S hyperfine splitting in muonic hydrogen

 μ ASTI, Zurich 2024

Aldo Antognini

PSI

ETH

Impact of the HFS measurement

Provides information on magnetic structure of the proton

- Spin structure program
- Form factor program
- Chiral perturbation theory
- Dispersion-based th.
- ▶ Lattice QCD

Hagelstein, Pascalutsa, Carlson, Martynenko, Tomalak, Faustov, Vanderhaegen, Lensky

Combined with H \rightarrow Test of HFS theory with rel. acc. < 10^{-8}

> Pachucki, Karshenboim, Indelicato, Eides, Martynenko, Patkos, Yerokhin, ...

Sensitive especially to axial-vector BSM contributions

$$V_{\rm HF,A}(r) = \begin{cases} -\frac{2g_A^{(1)}g_A^{(2)}}{3\pi} \left(\frac{e^{-m_{\phi}r}}{r} + \frac{2\pi\delta^{(3)}(r)}{m_{\phi}^2}\right) \mathbf{S_1} \cdot \mathbf{S_2} & \text{for } m_{\phi} \lesssim a_0^{-1}, \\ -\frac{4d_v^{(A)}}{m_1m_2}\delta^{(3)}(r)\mathbf{S_1} \cdot \mathbf{S_2} & \text{for } m_{\phi} \sim m_r, \end{cases}$$

Frugiele & Peset

 μ ASTI, Zurich 2024

Aldo Antognini

9

Stadnik

We need to face a technology leap (compared to 2S-2Pmeasurement)

5'000 times larger laser energy density

Aldo Antognini

laser frequency

Fill now zero photons at 6.8µm but already a dozen of publications on lasers

Optics Express 31, Issue 18, pp. 29558-29572 (2023)

Injection-seeded high-power Yb:YAG thin-disk laser stabilized by the Pound-Drever-Hall method

MANUEL ZEYEN,¹ LUKAS AFFOLTER,¹ MARWAN ABDOU AHMED,² THOMAS GRAF,² OGUZHAN KARA,¹ KLAUS KIRCH,^{1,3} ADRIAN LANGENBACH,¹ MIROSLAW MARSZALEK,¹ FRANÇOIS NEZ,⁴ AHMED OUF,⁵ RANDOLF POHL,^{5,6} SIDDHARTH RAJAMOHANAN,⁵ PAULINE YZOMBARD,⁴ KARSTEN SCHUHMANN,¹ AND ALDO ANTOGNINI^{1,3,*}

Optics Express 32, Issue 2, pp. 1218-1230 (2024)

A compact 20-pass thin-disk multipass amplifier stable against thermal lensing effects and delivering 330 mJ pulses with $M^2 < 1.17$

MANUEL ZEYEN,¹ LUKAS AFFOLTER,¹ MARWAN ABDOU AHMED,² THOMAS GRAF,² OGUZHAN KARA,¹ KLAUS KIRCH,^{1,3} MIROSLAW MARSZALEK,¹ FRANÇOIS NEZ,⁴ AHMED OUF,⁵ RANDOLF POHL,^{5,6} SIDDHARTH RAJAMOHANAN,⁵ PAULINE YZOMBARD,⁴ KARSTEN SCHUHMANN¹ AND ALDO ANTOGNINI^{1,3,*} RESEARCH ARTICLE | JANUARY 12 2023

Pound–Drever–Hall locking scheme free from Trojan operating points 3

Radiant fluence from ray tracing in optical multipass systems

MIROSŁAW MARSZAŁEK^{1,2*}, LUKAS AFFOLTER¹, OGUZHAN KARA^{1,2}, KLAUS KIRCH^{1,2}, KARSTEN SCHUHMANN¹, MANUEL ZEYEN¹, AND ALDO ANTOGNINI^{1,2}

 μ ASTI, Zurich 2024

Rev. Sci. Instrum. 94, 013001 (2023)

Accepted in applied optics (2024)

14.06.2024 11

Prospected statistical precision in 3 weeks of data taking

PSI

The problem: How long to search for the resonance?

Conclusions

Muonic Atom Spectroscopy Theory Initiative

Theory prediction for 1S-HFS in μ H needed soon **before** the experiment on the 2×10^{-5} level (1 GHz)

The experiment has the potential to reach the 1×10^{-7} level

Aldo Antognini

Opens the way to test HFS in H $< 1 \times 10^{-8}$ level

Opens the way for investigating the HFS splitting in other systems: μ^{3} He⁺, μ^{6} Li⁺⁺

First goal of the initiative

Standard Model product			
Predictio	on for the	e S-lev	vel h
Μ	uonic Aton (1 Specti Dated: J	roscoj June 1
CONTENTS			
I. Introduction			
 A. Motivation and planned exper B. Two-body bound state from C interaction C. Physical origin of the base 	iments oulomb	$2 \\ 2 \\ 2 \\ 2$	V
D. Physical constants II. QED contribut:	e splitting	$\frac{2}{3}$	VII.
 A. Fermi energy and muon anomale moment B. Breit correct: 	splitting ous magnet	4 ic	Α.
C. Electron vacuum polarization 1. Correction to the Fermi energy 2. Wave function correction	V Potential	4 7 7 8	i
 D. Leading muon self-energy and muc polarization E. Next-to-log J. 	on vacuum	8 9	
vacuum polarization F. Light-by-light electron	und	9	
G. Muon self-energy combined with ele vacuum polarization H. Muon to a la l	arization 1 ectron	0	
polarization I. Electroweak correction	11 cuum	_	
J. Recoil corrections magnetic moment K. Fust	11 11 alous		
L. Combined muon a last	11		
polarization M. Relativistic correction	12 1 12		
vacuum polarization N. Higher-order	lectron		
O. Proton self-energy	12 12		
A. Floor	12		
1. Zemach radius 2. Recoil contribution	12 12		
B. Polarizability contribution C. TPE with electron years	$12 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12 \\$		
 D. Radiative corrections to the TPE with nuclear finite-size E. Hadronic 	$12 \\ 13$		
F. Combined electron and hadronic vacuum polarization	$\frac{13}{13}$		
Light-by-light hadronic contribution	$\frac{13}{13}$		
stimate and uncertainty estimate	13		

PSI

oscopy Theory Initiative and 13, 2024)	ic atoms
V. Refinements through ordinary hydrogen spectroscopy	
VI. Outlook	13
A. Desired theory improvements B. Interpretation of experiment VII. Summary	13 13 13
A. Spin and and a	13
Acknowledgments	14
References	15
	15

For tomorrow Saturday (door is open from 8:00 to 10:30)

Aldo Antognini

 μ ASTI, Zurich 2024

Restaurant for this evening (Die Waid at 19:00)

Aldo Antognini

 μ ASTI, Zurich 2024