µASTI — New "Theory Initiative"

Muonic Atom Spectroscopy Theory Initiative

#### What?

quantitative unbiased summary by a broad team of experts, resulting in the state-of-art SM predictions

#### Why?

Consistency, consensus, credibility

<u>How?</u> Workshops, review paper(s)

Antognini, Carlson, Hagelstein, Indelicato, Pachucki, Pascalutsa

# **BIG GOALS OF PRECISION PHYSICS**

### Standard Model Electroweak Leptons Quarks $v_e v_\mu v_\tau$ μτ g Weak Gluons Photon Bosons **Higgs Boson**

1. beyond the SM

#### 2. Non-perturbative SM



Lattice QCD EFTs of QCD (chiral PT) Data-driven

### Inspired by "g-2 Theory Initiative"

Physics Reports 887 (2020) 1-166



#### The anomalous magnetic moment of the muon in the Standard Model



| Contribution                                                         | Section       | Equation   | Value $\times 10^{11}$ | References              |
|----------------------------------------------------------------------|---------------|------------|------------------------|-------------------------|
| Experiment (E821)                                                    |               | Eq. (8.13) | 116 592 089(63)        | Ref. [1]                |
| HVP LO $(e^+e^-)$                                                    | Section 2.3.7 | Eq. (2.33) | 6931(40)               | Refs. [2–7]             |
| HVP NLO $(e^+e^-)$                                                   | Section 2.3.8 | Eq. (2.34) | -98.3(7)               | Ref. [7]                |
| HVP NNLO $(e^+e^-)$                                                  | Section 2.3.8 | Eq. (2.35) | 12.4(1)                | Ref. [8]                |
| HVP LO (lattice, <i>udsc</i> )                                       | Section 3.5.1 | Eq. (3.49) | 7116(184)              | Refs. [9–17]            |
| HLbL (phenomenology)                                                 | Section 4.9.4 | Eq. (4.92) | 92(19)                 | Refs. [18–30]           |
| HLbL NLO (phenomenology)                                             | Section 4.8   | Eq. (4.91) | 2(1)                   | Ref. [31]               |
| HLbL (lattice, <i>uds</i> )                                          | Section 5.7   | Eq. (5.49) | 79(35)                 | Ref. [32]               |
| HLbL (phenomenology $+$ lattice)                                     | Section 8     | Eq. (8.10) | 90(17)                 | Refs. [18-30,32]        |
| QED                                                                  | Section 6.5   | Eq. (6.30) | 116584718.931(104)     | Refs. [33,34]           |
| Electroweak                                                          | Section 7.4   | Eq. (7.16) | 153.6(1.0)             | Refs. [35,36]           |
| HVP ( $e^+e^-$ , LO + NLO + NNLO)                                    | Section 8     | Eq. (8.5)  | 6845(40)               | Refs. [2–8]             |
| HLbL (phenomenology $+$ lattice $+$ NLO)                             | Section 8     | Eq. (8.11) | 92(18)                 | Refs. [18–32]           |
| Total SM Value                                                       | Section 8     | Eq. (8.12) | 116 591 810(43)        | Refs. [2-8,18-24,31-36] |
| Difference: $\Delta a_{\mu} \coloneqq a_{\mu}^{\exp} - a_{\mu}^{SM}$ | Section 8     | Eq. (8.14) | 279(76)                |                         |

New Theory Initiative

## Muonic Atom Spectroscopy Theory Initiative $\mu$ ASTI

Working groups, possible divisions

μH, μD, ..., μX, Mu
Lamb shift, fs, hfs
QED, QCD = (lattice, EFTs, data-driven)

<u>Main outcome:</u> full SM result, consisting of many contributions

<u>Priority:</u> HFS of light muonic atoms

Antognini, Carlson, Hagelstein, Indelicato, Pachucki, Pascalutsa