The beam extraction system for the 5 MeV Mott at MESA

V. Tyukin¹

¹Inst. of Nuclear Physics JGU Mainz Germany

MESA-Polarimeter Workshop JGU Mainz, Germany, 15 Jun 2023

Outline

1 Introduction

Kickers for 5.0 MeV beam line

3 Method of evaluation

alery, Tyukin (KPH, JGU)

Kile 🔕 paisas

Outline

1

2

3

4

5

Home Office, Tag 2 Introduction Kickers for 5.0 MeV beam line Method of evaluation Results A al li Summary Dipic AROMA Bu pin 姠 🧿 ракма

"The second day of lockdown"", Mainz, Spring 2020

MESA accelerator

4/29

KIP 🔕 PRIMA

P2 Experiment @ MESA

- MESA accelerator is being built in Mainz
- ullet CW spin polarized electron beam, polarization \sim 85 %
- Beam current \sim 150 μ A, beam energy \sim 155 MeV
- Double Mott polarimeter at 100.0 keV with gold foil targets
- Mott polarimeter at 5.0 MeV with gold foil targets
- Møller polarimeter at 55.0 155.0 MeV with polarized atomic hydrogen target.
- The goals at MESA $P_{Mott, double} = P_{Mott, 5.0 MeV} = P_{Møller, H}$
- Accuracy $\Delta P < 0.5\%$
- Møller polarimeter measurements in online mode
- Both Mott polarimeters measurements only in offline mode

KU 🕲 PRICAD

- $\bullet~$ Beam current $\sim 150\,\mu A$, beam energy $\sim 0.10, 5.0, 155.0\,MeV$
- The problem is that during a run it is undesirable to switch off or change operation condition because a significant thermal drift of the production laser and/or cathode is possible
- An acceptable duty cycle $d.c. \sim 0.01$ with a switch period $t \sim 1.0$ s
- $t_{On/Off} \sim$ 0.001 s, $t_{Mott} \sim$ 0.010 s and $t_{beam} \sim$ 0.988 s
- $t_{On/Off} \sim 0.001 \text{ s requires quick iron free kicker}$

Basic definitions

- $\bullet\,$ Magnetic or electrostatic quick kicker with bend angle $\sim 6.0-15.0\,^\circ$
- $T_{beam} = 5.0 \,\mathrm{MeV}$
- *m*, *c*, *q* in SI units
- rigidity: $\rho B = \beta \gamma \frac{mc}{q} = 0.018 \text{ T m}$
- magnetic kicker with $\rho = 2.0 \text{ m}$ requires B = 0.009 T
- magnetic kicker with $\rho = 1.5$ m requires B = 0.012 T
- electrostatic kicker with $\rho = 2.0 \text{ m}$ requires $E = 2.7 \frac{\text{MeV}}{\text{m}}$

Possible arrangement of 5.0 MeV beam distribution unit.

- Q-Kicker: the extraction from the main beam-line with first stage 7.5° is provided by the kicker magnet.
- Q-Kicker: duty factor 0.01, rise time 0.1 ms.
- PM electromagnet: "on-state" second stage 7.5° with a normal dipole magnet to Mott polarimeter,
- PM electromagnet: "off-state" beam diagnostic.
- Diag: beam diagnostic system (e.g. longitudinal phase space diagnostics)

Outline

Kickers for 5.0 MeV beam line

3 Method of evaluatio

2

Valery, Tyukin (KPH, JGU)

Electrostatic and magnetic field kickers

Electrostatic kicker

- electrostatic kicker requires $E = c B = 2.7 \frac{MV}{m}$
- with gap = 0.04 m
- operation voltage $U_{plate} \sim \pm 54.0 \, \text{kV}$ would be too high

- $R_{coil} = 1.25 \, \mathrm{m}$
- $B_{coil} = 0.0146 \,\mathrm{T}$
- $\theta_{coil} = 15.0^{\circ}$
- $CS_{coil} = 0.030 \times 0.015 \, \text{m}$
- $I_{coil} \sim 622.0 \,\mathrm{A} imes \mathrm{turn}$ would be very high

Canted Cosine Theta (CCT)

- proposed in 1970
- two loops induce B field red and blue lines, black line points to summarized B, dashed lines to moving electron

Source: D. Meyer, R. Flasck, Nuclear Instruments and Methods 1970, 80, 339–341

CCT as solenoid, dipole and quadrupole fields

Outline

Valery, Tyukin (KPH, JGU)

Mathematica Wolfram I

Example: draft view of coil segment

- Grid of short current segments: CoilNode[[n]]
- Grid of segment position: CoilVector[[n]]
- Directly using of Biot–Savart law for each segment
- Embarrassingly parallel problem
- Solution of BMT equation of spin movement
- Solution of moving equation

Mathematica Wolfram II

 $EO[\{x, y, z\}] = \{0, 0, 0\};$ (* magnitic and electric fields *) $B0[\{x1_, y1_, z1_\}] = \frac{\mu_{\theta} I_{coil}}{4\pi} \sum_{n=1}^{nsum} \frac{\overline{CoilVector}[n] \times (\{x1, y1, z1\} - \overline{CoilKnode}[n])}{Norm[(\{x1, y1, z1\} - \overline{CoilKnode}[n])]^3}$ $r[t] = {x[t], y[t], z[t]};$ (* radius vector *) sp[t] = {spx[t], spy[t], spz[t]}; (* spin vector *) solution = NDSolve[Join[löse Diff… verknüpfe Thread $\left[\partial_{t,t} \mathbf{r}[t] = -\frac{q}{\sqrt{mc}} \left(\frac{1}{c} E\Theta[\mathbf{r}[t]] + \partial_t \mathbf{r}[t] \times B\Theta[\mathbf{r}[t]] \right) \right],$ $\frac{\text{Thread}}{|\text{formation}|} \left[\partial_t \text{sp[t]} = -\frac{q}{\gamma \text{mc}} \text{sp[t]} \times \left((1 + a\gamma) \text{BO}[r[t]] - \frac{a\gamma^2}{\gamma + 1} \left(\partial_t r[t] \times \text{BO}[r[t]] \right) \partial_t r[t] - \gamma \left(a + \frac{1}{(\gamma + 1)} \right) r[t] \times \text{EO}[r[t]] \right) \right],$ Thread $[r[0] = \{0.0, sr, Lfree\}],$ (* {x[0]==0.`,y[0]==1.25`,z[0]==1.`} *) Thread [Evaluate $[\partial_t r[t] / . t \rightarrow 0] = \{0.0, 0.0, -\beta\}$], $(* \{x'[0] = 0., y'[0] = 0., z'[0] = -\beta\} *)$ Thread $[sp[0] = \{0, 0, 1\}]$, (* {spx[0] == 0, spy[0] == 0, spz[0] == 1} *) {x, y, z, spx, spy, spz}, {t, itime}]; (* simultaniosly solution of moving and BMT equations *)

Mathematica Wolfram. Check on magic energy

• $g_e = 2.00231930436322$

•
$$a = \frac{g_e - 2}{2}$$
,
• $\gamma = \frac{N_{spinrotations} - 1}{a}$

•
$$T_{beam} = (\gamma - 1)m_e$$

 started and finished with spin vector sp(0) = sp(t_f){0,0,1}

Outline

1 Introduction

Kickers for 5.0 MeV beam line

3 Method of evaluatior

Valery, Tyukin (KPH, JGU)

Coils and beam

red and blue - coils, black arrow - without B-field, red arrow - bent beam

Good field regions I

- left: vector map of magnetic field at the center of kicker
- middle: magnetic field profile along z-axis with both coils in background
- lower row: good field region ±1% at marked points

18/29

Switch to another configuration

-0.05 y, [m] 0.00 -0.05 z, [m] -0.05 -0.05 x, [m] -0.

• X

- two power supplies is necessary
- difficulties on production
- split on two part not possible

• 🗸

- Just one power supply
- look like simple in production
- two separates parts

Good field region II

- Top: view of the CCT kicker with an electron path with (red) and without (black) a magnetic field.
- Bottom: magnetic field profile in x-y planes along z-axis. Good field regions of $\pm 1\%$ are marked as points in the upper right picture.
- The black circle shows the vacuum tube.

0.00

-0.02

-0.06

x, [m]

Transfer matrix BSC and CCT cases

$$TM_{BSC} = \begin{pmatrix} 1.031 & 2.368 & 0. & 0. \\ +0.027 & 1.033 & 0. & 0. \\ \epsilon & \epsilon & 0.785 & 2.043 \\ \epsilon & \epsilon & -0.213 & 0.717 \end{pmatrix}$$
$$TM_{CCT} = \begin{pmatrix} 0.940 & 2.24 & \epsilon & \epsilon \\ -0.055 & 0.927 & \epsilon & \epsilon \\ 0. & 0. & 0.892 & 2.22 \\ 0. & 0. & -0.082 & 0.918 \end{pmatrix}$$

Total 4x4 transfer matrices, with $\epsilon \le 1.0 \times 10^{-6}$ uncoupled motion of electron.

Emittance tracking I

Emittance growth in x and y planes is investigated. Lines from 1 to 5 BSC kickers, line 1 scaled by factor 10, line 6 CCT

Courtesy Dr. Christoph Matejcek, private communications, 2022

NIU 🕲 PRIKMA

Emittance tracking II

- Beam trecking inside of the kicker
- Black dashed line input
- Red and blue lines after kicker

Valery, Tyukin (KPH, JGU)

NU O PROMA

Possible mechanical design

Draft of bending chamber for bending angle from 6° (green) to 15 $^\circ$ (black)

Courtesy Th. Feldnana

Construction design

Valery, Tyukin (KPH, JGU

Possible applications at MAMI and MESA

 as corrector magnet at low energy T_{beam} = 100.0 keV with d_{coil} = 0.045 m, current_{coil} = 1.0 A and just 20 turns

 due to very good field as quadrupole for electron separation at atomic hydrogen target

Outline

1 Introduction

Kickers for 5.0 MeV beam line

3 Method of evaluation

Valery, Tyukin (KPH, JGU)

- CCT kicker is preferred
- Hardware in fabrication
- For further references see Talk PSTP-2022 V. Tyukin, K. Aulenbacher, C. Matejcek, *PoS* **2023**, *PSTP2022*, 026

Thank for support

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

Thank you for your attention!

Valery, Tyukin (KPH, JGU)

The Mainz Energy recovering Superconducting Accelerator (MESA) requires for carry out of the high-precision measurements exactly measurement the long-term spin properties of the electron beam.

The chain of polarimeters at different beam energy is planed. Previously design of the 5.0 MeV beam section contained a kicker and a Mott polarimeter is presented.

KU 🕲 PRICAD

Good field regions for elliptical coil

NIV 🔕 PRISMA

Good field regions for BSC kicker

Bx field in center of BSC kicker

NIV 🔕 PRISMA

Bx field along beam trajectory II

Valery, Tyukin (KPH, JGU

2023-06-15

NIV 🔕 PRISMA