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Parameter estimation
Underlying assumption: data points that we measure sample an underlying, true, distribution

examples:

I decay of radioactive isotope: decay rate follows exponential distribution

I mass and line width of a broad resonance: Breit-Wigner (Lorentzian) shape

I …

detector resolution may ‘smear out’ measured values from true value

Our task:

determine the parameters defining the underlying distribution

Note:

would like to have an objective measure of how well our model describes data: goodness of fit
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Parameter estimation
Parameters of a pdf are constants that characterise

its shape, e.g.

f (x; θ) = 1

θ
e−x/θ

x: random variable

θ: parameter
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Suppose we have a sample of observed values,

~x = (x1, . . . , xn),
independent, identically distributed (i.i.d.).

Want to find some function of the data to estimate the parameters

θ̂(~x) Estimator for θ

Often, more than one parameter: ~θ
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Properties of estimators
Consistency Estimator is consistent if it

converges to the true value

lim
n→∞

θ̂ = θ

Bias Difference between expectation

value of estimator and true value

b ≡ E [θ̂] − θ

Efficiency Estimator is efficient if its variance

V [θ̂] is small

Example: estimators for lifetime of a particle
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Unbiased estimators for mean and variance of a distribution
Estimator for the mean:

µ̂ = x̄ = 1

n

n

∑
i=1

xi

b = E [µ̂] − µ = 0; V [µ̂] = σ2

n , i.e. σµ̂ = σ√
n

Estimator for the variance:

s2 = σ̂2 = 1

n − 1

n

∑
i=1

(xi − x̄)2

b = E [s2] − σ2 = 0

V [s2] = σ4

n

(
(κ − 1) + 2

n − 1

)
κ = µ4/σ4: kurtosis.

Note: even though s2 is unbiased estimator for variance σ2,

s is a biased estimator for s.d. σ (have to apply non-linear function to get s from s2)
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Likelihood function for i.i.d. data
Suppose we have a measurement of n independent values (i.i.d.)

~x = (x1, . . . , xn)

drawn from the same distribution

f (x;~θ), ~θ = (θ1, . . . , θm)

The joint pdf for the observed values~x is given by

L(~x;~θ) =
n

∏
i=1

f (xi ;~θ) likelihood function

Tools for physicists: Statistics | SoSe 2023 | 49



Likelihood function for i.i.d. data
Suppose we have a measurement of n independent values (i.i.d.)

~x = (x1, . . . , xn)

drawn from the same distribution

f (x;~θ), ~θ = (θ1, . . . , θm)

The joint pdf for the observed values~x is given by

L(~x;~θ) =
n

∏
i=1

f (xi ;~θ) likelihood function

Note

Likelihood L(~θ) is not a pdf: not normalized (unclear whether
∫
dθL(θ) exists at all)

Can be normalized using ∫
dθL(θ)p(θ)

but p(θ) not uniquely determined! (used in Bayesian reasoning: prior)
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Likelihood function for i.i.d. data

L(~x;~θ) =
n

∏
i=1

f (xi ;~θ)

Consider~x as constant, so L(~x;~θ) is a function of the parameters ~θ only.

The maximum likelihood estimate (MLE) of the parameters are the values ~θ for which L(~x;~θ) has a
global maximum.

For practical reasons, usually use

log L(~x;~θ) =
n

∑
i=1

log f (xi ;~θ)

(computers can cope with sum of small numbers much better

than with product of small numbers)
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ML Example: Exponential decay
Consider exponential pdf: f (t; τ) = 1

τ e
−t/τ

Independent measurements drawn from this distribution: t1, t2, . . . , tn
Likelihood function:

L(τ) = ∏
i

1

τ
e−ti/τ

L(τ) is maximal where log L(τ) is maximal:

log L(τ) =
n

∑
i=1

log f (ti ; τ) =
n

∑
i=1

(
log 1

τ
− ti

τ

)

Find maximum:

∂ log L(τ)
∂τ

= 0 ⇒
n

∑
i=1

(
−1

τ
+ ti

τ2

)
= 0 ⇒ τ̂ = 1

n
∑
i

ti
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ML Example: Gaussian
Consider x1, . . . , xn drawn from Gaussian(µ, σ2)

f (x; µ, σ2) = 1√
2πσ

e
− (x−µ)2

2σ2

Log-likelihood function:

log L(µ, σ2) = ∑
i

log f (xi ; µ, σ2) = ∑
i

(
log 1√

2π
− log σ − (xi − µ)2

2σ2

)

Derivatives w.r.t µ and σ2:

∂ log L(µ, σ2)
∂µ

= ∑
i

xi − µ

σ2
; ∂ log L(µ, σ2)

∂σ2
= ∑

i

(
(xi − µ)2
2σ4

− 1

2σ2

)

Tools for physicists: Statistics | SoSe 2023 | 52



ML Example: Gaussian
Setting derivatives w.r.t. µ and σ2 to zero, and solving the equations:

µ̂ = 1

n
∑
i

xi ; σ̂2 = 1

n
∑
i

(xi − µ̂)2

Find that the ML estimator for σ2 is biased!

For Gaussian distribution, µ and σ can be estimated simply from histogram mean and RMS!
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Properties of the ML estimator
ML estimator is consistent, i.e. it approaches the true value asymptotically

In general, ML estimator is biased for finite n

(need to check size of bias)

ML estimator is invariant under parameter transformation

ψ = g(θ) ⇒ ψ̂ = g(θ̂)
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Averaging measurements with Gaussian uncertainties
Assume n measurements, same mean µ, but different resolutions σ

f (x; µ, σi) = 1√
2πσi

e
− (x−µ)2

2σ2
i

log-likelihood, similar to before:

log L(µ) = ∑
i

(
log 1√

2π
− log σi −

(xi − µ)2

2σ2
i

)

We obtain formula for weighted average, as before:

∂ log L(µ)
∂µ

∣∣∣∣
µ=µ̂

!= 0 ⇒ µ̂ =
∑i

xi
σ2
i

∑i
1
σ2
i

Tools for physicists: Statistics | SoSe 2023 | 55



Averaging measurements with Gaussian uncertainties
Uncertainty? Taylor expansion exact, because log L(µ) is parabola:

log L(µ) = log L(µ̂) +
[

∂ log L
∂µ

]
µ=µ̂

(µ − µ̂)︸ ︷︷ ︸
=0

−h

2
(µ − µ̂)2, h = − ∂2 log L(µ)

∂µ2

∣∣∣∣∣
µ=µ̂

This means that likelihood function is a Gaussian:

L(µ) ∝ exp
(

−h

2
(µ − µ̂)2

)
with a standard deviation

σµ̂ = 1/
√
h =

 ∂2 log L(µ)
∂µ2

∣∣∣∣∣
µ=µ̂

−1

h = ∑
i

1

σ2
i

⇒ σµ̂ =
(

∑
i

1

σ2
i

)−1/2
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Uncertainty bounds
Likelihood function with only one parameter:

L(~x; θ) = L(x1, . . . , xn; θ) =
n

∏
i=1

f (xi ; θ)

and θ̂ an estimator of the parameter θ

Without proof: it can be shown that the variance of a (biased, with bias b) estimator satisfies

V [θ̂] ≥
(1+ ∂b

∂θ )2

E
[
− ∂2 log L

∂θ2

]
Cramér-Rao minimum variance bound (MVB)
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Uncertainty of the MLE: Approach I
Approximation

E

[
− ∂2 log L

∂θ2

]
≈ − ∂2 log L

∂θ2

∣∣∣∣∣
θ=θ̂

good for large n (and away from any explicit boundaries on θ)

In this approximation, variance of ML estimator is given by

V [θ̂] = −
(

∂2 log L
∂θ2

∣∣∣∣∣
θ=θ̂

)−1

so we only need to evaluate the second derivative of log L at its maximum.
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Uncertainty of the MLE: Approach II (‘graphical method’)
Taylor expansion of log L around maximum:

log L(θ) = log L(θ̂) +
[

∂ log L
∂θ

]
θ=θ̂

(θ − θ̂)︸ ︷︷ ︸
=0

+1

2

[
∂2 log L

∂θ2

]
θ=θ̂

(θ − θ̂)2 + · · ·

If L approximately Gaussian (log L approx. a parabola):

log L(θ) ≈ log Lmax − (θ − θ̂)2

2σ̂2
θ̂

Estimate uncertainties from the points where log L has dropped by 1/2 from its maximum:

log L(θ̂ ± σ̂θ̂) ≈ log Lmax − 1

2

This can be used even if L(θ) is not Gaussian
If L(θ) is Gaussian: results of approach I & II identical
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Example:
uncertainty of the decay time for an exponential decay

Variance of the estimated decay time:

∂2 log L(τ)
∂τ2

= ∑
i

(
1

τ2
− 2

ti

τ3

)
= n

τ2
− 2

τ3
∑
i

ti = n

τ2

(
1− 2τ̂

τ

)
Thus,

V [τ̂] = −
(

∂2 log L(τ)
∂τ2

)−1

τ=τ̂

= τ̂2

n

⇒ σ̂τ̂ = τ̂√
n
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Exponential decay: illustration
20 data points sampled from f (t; τ) = 1

τ e
−t/τ with τ = 2
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ML estimate:

τ̂ = 1.65

σ̂ = 1.65/
√
20 = 0.37 using quadratic approximation of L(τ)

or σ̂ = +0.47
−0.34 using shape of − log L curve

Tools for physicists: Statistics | SoSe 2023 | 61



Exponential decay: log L for different sample sizes
10 data points
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quadratic approximation for log L
not very good

500 data points
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quadratic approximation for log L excellent
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Variance of the ML estimator form parameters
In limit of large sample size, L approaches multivariate Gaussian distribution for any probability density :

L(~θ) ∝ exp
(

−1

2
(~θ − ~̂θ)TV−1[~̂θ](~θ − ~̂θ)

)
Variance of ML estimator reaches MVB (minimum variance bound), related to the Fisher information

matrix:

V [~̂θ] → I(θ)−1, Ijk [~θ] = −E

[
∂2 log L(~θ)

∂θj∂θk

]
Covariance matrix of the estimated parameters:

V [~̂θ] ≈
[

− ∂2 log L(~x;~θ)
∂~θ2

∣∣∣∣∣
~θ=~̂θ

]−1

Standard deviation of a single parameter:

σ̂θ̂j
=
√

(V [~̂θ])jj
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MLE in practice: numeric minimisation

Analytic expression for L(θ) and its derivatives often not easily known

Use a generic minimiser like MINUIT to find (global) minimum of − log L(θ)

Typically uses gradient descent method to find minimum and then scans around minimum to obtain

Lmax − 1/2 contour

make sure you don’t get stuck in a local minimum: check likelihood profiles

á see today’s practical part for a hands-on
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MINUIT
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MINUIT

generic minimiser

around since the 1970s (Fred James, CERN; first implementation in FORTRAN)

ported to C++ (Minuit2 in ROOT), Python interface (iminuit)

features:

several algorithms for minimisation

one of the few minimisers that returns estimates for parameter errors

compute confidence intervals by scanning likelihood function around minimum

…

use for generic minimisation only — dedicated fit routines (e.g. for track fits) may have better

performance
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Bounds on parameters in MINUIT
Sometimes, you may want to bound the allowed range of fit parameters

e.g. to prevent (numerical) instabilities or

avoid unphysical results (‘fraction f should be in [0,1]’, ‘mass ≥ 0’)

MINUIT internally transforms parameter y with two-sided bounds with an arcsin(y) function to an

unbounded parameter x:
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Bounds on parameters in MINUIT

If fitted parameter value is close to boundary, errors

will become asymmetric and maybe even incorrect

Placing very large limits ’just in case’ (such as

[0,1010]) can lead to total loss of precision for small

parameter values

Try to find alternative parametrisation to avoid region of instability.

E.g. complex number

z = reiφ with bounds r ≥ 0, 0 ≤ φ < 2π

z = x + iy may be better behaved

If bounds were placed to avoid ‘unphysical’ region, consider not imposing the limits and dealing

with the restriction to the physical region after the fit.
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Extended ML method

In standard ML method, information about unknown parameters is encoded in shape of the distribution

of the data.

Sometimes, the number of observed events also contains information about the parameters (e.g. when

measuring a decay rate).

Normal ML method: ∫
f (x;~θ)dx = 1

Extended ML method: ∫
q(x;~θ)dx = ν(~θ) = predicted number of events
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Extended ML method (II)
Likelihood function becomes:

L(~θ) = νn e−ν

n! ∏
i

f (xi ;~θ) where ν ≡ ν(~θ)

And log-likelihood function:

log L(~θ) = −log(n!) − ν(~θ) + ∑
i

log[f (xi ;~θ)ν(~θ)]

log n! does not depend on parameters. Can be omitted in minimisation
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Application of Extended ML method
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Example:

Two-component fit (signal + background)

Unbinned ML fit, histogram for visualisation only

Want to obtain meaningful estimate of the uncertainties

of signal and background yields

Normalised pdf:

f (x; rs,~θ) = rsfs(x;~θ) + (1− rs)fb(x;~θ)

rs = s

s + b
, rb = 1− rs = b

s + b

− log L̃(s,b,~θ) = s + b − ∑
i

log[sfs(xi ;~θ) + bfb(xi ;~θ)]
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Application of Extended ML method (II)

Could have just fitted normalised pdf to our n events, with rs an additional parameter.

Good estimate of the number of signal events: rs × n

However, σrs × n is not a good estimate for the variation of the number of signal events:

ignores fluctuations of n.

Using extended ML fixes this.
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Least squares from ML

Consider n measured values

y1(x1), y2(x2), . . . , yn(xn), assumed to be

independent Gaussian r.v. with known variances,

V [yi ] = σ2i .

x y σy

1 1.7 0.5
2 2.3 0.3
3 3.5 0.4
4 3.3 0.4
5 4.3 0.6
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Least squares from ML

Consider n measured values

y1(x1), y2(x2), . . . , yn(xn), assumed to be

independent Gaussian r.v. with known variances,

V [yi ] = σ2i .

Assume we have a model for the functional

dependence of yi on xi ,

E [yi ] = f (xi ;~θ)

Want to estimate ~θ

Likelihood function:

L(~θ) = ∏
i

1√
2πσi

exp

− 1

2

(
yi − f (xi ;~θ)

σi

)2

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x
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y
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Least squares from ML (II)
Log-likelihood function:

log L(~θ) = −1

2
∑
i

(
yi − f (xi ;~θ)

σi

)2

+ terms not depending on ~θ

Maximising this is equivalent to minimising

χ2(~θ) = ∑
i

(
yi − f (xi ;~θ)

σi

)2

so, for Gaussian uncertainties, method of least squares coincides with maximum likelihood method.

Error definition: points where χ2 = χ2
min

+ Z2 for a Zσ interval

(compare: log L = log Lmax − 1
2
Z2 for MLE)
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Linear least squares
Important special case: consider function linear in the parameters:

f (x;~θ) = ∑
j

aj(x)θj n data points, m parameters

χ2 in matrix form:

χ2 = (~y − A~θ)TV−1(~y − A~θ), Ai,j = aj(xi)

=~yTV−1~y − 2~yTV−1A~θ +~θTATV−1A~θ

Set derivatives w.r.t. θi to zero:

∇χ2 = −2(ATV−1~y − ATV−1A~θ) = 0

Solution:

~̂θ = (ATV−1A)−1ATV−1~y ≡ L~y

Tools for physicists: Statistics | SoSe 2023 | 74



Linear least squares
Covariance matrix U of the parameters, from error propagation

(exact, because estimated parameter vector is linear function of data points yi )

U = LVLT

= (ATV−1A)−1

Equivalently, calculate numerically

(U−1)ij = 1

2

[
∂2χ2

∂θi∂θj

]
~θ=~̂θ
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Example: straight line fit

y = θ0 + θ1x

Conditions ∂χ2/∂θ0 = 0 and ∂χ2/∂θ1 = 0 yield two linear equations with two variables that are easy to

solve.

With the shorthand notation

[z] := ∑
i

z

σ2
i

we finally obtain

θ̂0 = [x2][y] − [x][xy]
[1][x2] − [x][x]

, θ̂1 = −[x][y] + [1][xy]
[1][x2] − [x][x]

Simple, huh? At least, easy to program and compute, given a set of data

(I’ll put the complete calculation for this in the appendix of the slides)
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Example: straight line fit

0 1 2 3 4 5 6
x

0

1
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4
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6

y

2 / ndof = 2.3 / 3
a = 1.162 ± 0.460
b = 0.614 ± 0.153

fit
data

Analytic fit result:

θ̂0 = [x2][y] − [x][xy]
[1][x2] − [x][x]

= 1.16207

θ̂1 = −[x][y] + [1][xy]
[1][x2] − [x][x]

= 0.613945

Covariance matrix of (θ0, θ1):

U = (ATV−1A)−1

=
(

0.211186 −0.064603 5
−0.064603 5 0.023410 5

)

Error band from

e2(x) = ~g(x)TU~g(x) with~g = ∇f (x;~θ)
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Example: straight line fit

0 1 2 3 4 5 6
x
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2 / ndof = 2.3 / 3
a = 1.162 ± 0.460
b = 0.614 ± 0.153

fit
data

Numerical estimate with MINUIT:
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Fitting binned data
Very popular application of least-squares fit: fit a model (curve) to binned data (a histogram)

Number of events occurring in each bin j is assumed to follow Poisson distribution with mean fj .

χ2 =
m

∑
j=1

(nj − fj)2

fj

Further common simplification: ‘modified least-squares method’, assuming that σ2nj = nj :

χ2 ≈
m

∑
j=1

(nj − fj)2

nj

Can get away with this when all nj are sufficiently large, but what about bins with small contents, or

even zero events?

á Frequently, bins with nj = 0 are simply excluded.

This throws away information, and will lead to biased results of your fit!
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Fitting binned data
Example: exponential distribution, 100 events

Oser, https://www.phas.ubc.ca/~oser/p509/Lec_09.pdf

red: true distribution

black: fit

The more bins you have with small

statistics, the worse the MLS fit

becomes.

ML method gives more reliable

results in this case.

If you must use MLS, then at least

rebin your data, at the loss of

information.
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Discussion of fit methods
Unbinned maximum likelihood fit

+ no need to bin data (make full use of information in data)

+ works naturally with multi-dimensional data

+ no Gaussian assumption

+ works with small statistics

− no direct goodness-of-fit estimate

− can be computationally expensive, especially with high statistics

− visualisation of data and fit needs a bit of thought

Least squares fit

+ fast, robust, easy

+ goodness of fit ‘free of charge’

+ can plot fit with data easily

+ works fine at high statistics (computationally cheap)

− assumes Gaussian/Poissonian errors

(this breaks down if bin content too small)

− suffers from curse of dimensionality

− blind for features smaller than bin size
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Practical estimation — verifying the validity of your fits
Want to demonstrate that

your fit procedure gives, at least on average, the correct answer: no bias

uncertainty quoted by your fit is an accurate measure for the statistical spread in your

measurement: correct error

Validation is particularly important for low-statistics fits

intrinsic ML bias proportional 1/n

Also important for problems with multi-dimensional observables:

mis-modelled correlations between observables can lead to bias
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Basic validation strategy
Simulation study

1. Obtain (very) large sample of simulated events

2. Divide simulated events in O(100− 1000) independent samples with the same size as the
problem under study

3. Repeat fit procedure for each data-sized simulated sample

4. Compare average value of fitted parameter values with generated value

à demonstrate (absence of) bias

5. Compare spread in fitted parameter values with quoted parameter error

à demonstrate (in)correctness of error
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Practical example — validation study
Example fit model in 1D (B mass)

signal component is Gaussian centred at B

mass

background component is ARGUS function

(models phase space near kinematic limit)

q(m; nsig, nbkg,~psig,~pbkg)

= nsigG(m;~psig) + nbkgA(m;~pbkg)
5.2 5.21 5.22 5.23 5.24 5.25 5.26 5.27 5.28 5.29 5.3

 (GeV)ESm

0

5

10

15

20

25

30

35

40

E
ve

nt
s 

/ (
 0

.0
01

 G
eV

 )

Fit parameter under study: nsig

result of simulation study:

1000 experiments

with
〈
n
gen
sig

〉
= 200,

〈
n
gen
bkg

〉
= 800

distribution of nfitsig

…looks good

140 160 180 200 220 240 260
#signal events

0

10

20

30

40

50

60

70

80

90

E
ve

nt
s 

/ (
 3

.5
 )

Tools for physicists: Statistics | SoSe 2023 | 84



Validation study — pull distribution
What about validity of the error estimate?

distribution of error from simulated

experiments is difficult to interpret …

don’t have equivalent of n
gen
sig

for the error

Solution: look at pull distribution

Definition:

pull(nsig) ≡
nfit
sig

− n
gen
sig

σfitn

Properties of pull:

I follows Gaussian distribution if parameter and

error ‘sensible’

I Mean is 0 if no bias

I Width is 1 if error is correct
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 0.030±pullMean = -0.0246 

 0.021±pullSigma =  0.954 
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Validation study — extended ML!
As an aside, ran this toy study also with standard (not extended) ML method:

Extended
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 0.030±pullMean = -0.0246 

 0.021±pullSigma =  0.954 

σ(pull) = 0.954± 0.021

Standard
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 0.0032±pullMean = -0.00174 

 0.000051±pullSigma =  0.100000 

σ(pull) = 0.001
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Validation study — low statistics example
Special care needs to be taken when fitting small data samples,

also if fitting small signal component in large sample

Possible causes of trouble

χ2 estimators become approximate as Gaussian approximation of Poisson statistics becomes

inaccurate

ML estimators may no longer be efficient

error estimate from 2nd derivative inaccurate

Bias term ∝ 1/n may no longer be small compared to 1/
√
n

In general, absence of bias, correctness of error cannot be assumed.

Use unbinned ML fits wherever possible — more robust

explicitly verify the validity of your fit
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Fit bias at low n
Low statistics example:

model as before, but with
〈
n
gen
sig

〉
= 20

Result of simulation study:
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 0.032±pullMean =  0.096 

 0.023±pullSigma =  1.023 

Distributions become asymmetric at low statistics

fit is positively biased
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Place limit on nsig?

Very tempting to limit signal yield to be ≥ 0

After all, negative signal yield is unphysical!

But: remember shape of nsig in our toy experiments. Removing small values of nsig will introduce

(additional) positive bias
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Validation study — how to obtain 107 simulated events?
Practical issue: usually need very large amounts of simulated events for a fit validation study

Of order 1000x (number of events in data), easily > 106 events

Using data generated through full (GEANT-based) detector simulation can be prohibitively

expensive

Solution: sample events directly from fit function

Technique called toy Monte Carlo sampling

Advantage: easy to do, very fast

Good to determine fit bias due to low statistics, choice of parametrisation, bounds on parameters,

…

Cannot test assumptions built in to fit model:

absence of correlations between observables, …

still need full simulation for this
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Summary of today’s lecture
Powerful tool to estimate parameters of distributions:

Maximum likelihood method

In the limit of large statistics, least squares method is equivalent to MLE

Linear least squares: analytical solution!

How to decide whether model is appropriate in the first place: next week!

goodness-of-fit, hypothesis testing, …

Whatever you use, validate your fit:

demonstrate absence of bias, correctness of error estimate
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Addendum: Linear least squares (I)
Fit model: y = θ1x + θ0
Apply general solution developed for linear least squares fit:

Ai,j = aj(xi)
L = (ATV−1A)−1ATV−1, ~̂θ = L~y

AT =
(

1 1 · · · 1

x1 x2 · · · xn

)
; V−1 =


1/σ21

1/σ22
. . .

1/σ2n


ATV−1 =

(
1/σ21 1/σ22 · · · 1/σ2n
x1/σ21 x2/σ22 · · · xn/σ2n

)

ATV−1A =
(

1/σ21 1/σ22 · · · 1/σ2n
x1/σ21 x2/σ22 · · · xn/σ2n

)
1 x1

1 x2

.

.

.
.
.
.

1 xn

 =
(

∑i 1/σ2i ∑i xi/σ2i
∑i xi/σ2i ∑i x

2
i /σ2i

)
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Addendum: Linear least squares (II)
2× 2 matrix easy to invert. Using shorthand notation [z] = ∑i z/σ2

i
:

(ATV−1A)−1 = 1

[1][x2] − [x][x]

(
[x2] −[x]
−[x] [1]

)

And therefore

L = (ATV−1A)−1ATV−1

= 1

[1][x2] − [x][x]

(
[x2] −[x]
−[x] [1]

)
·
(

1/σ21 1/σ22 · · · 1/σ2n
x1/σ21 x2/σ22 · · · xn/σ2n

)

= 1

[1][x2] − [x][x]

 [x2]
σ2
1

− [x]x1
σ2
1

· · · [x2]
σ2
n

− [x]xn
σ2
n

−[x]
σ2
1

+ [1]x1
σ2
1

· · · −[x]
σ2
n

+ [1]xn
σ2
n


And finally:

θ̂0 = [x2][y] − [x][xy]
[1][x2] − [x][x]

, θ̂1 = −[x][y] + [1][xy]
[1][x2] − [x][x]
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Best Linear Unbiased Estimate (BLUE)

Have seen how to combine uncorrelated measurements.

Now consider n data points yi ,~y = (y1, . . . , yn) with covariance matrix V .

Calculate weighted average λ by minimising

χ2(λ) = (~y −~λ)TV−1(~y −~λ) ~λ = (λ, . . . , λ)

Result:

λ̂ = ∑
i

wiyi , with wi = ∑k(V−1)ik
∑k,l(V−1)kl

Variance:

σ2
λ̂

= ~wTV~w = ∑
i,j

wiVijwj

This is the best linear unbiased estimator, i.e. the linar unbiased estimator with the lowest variance
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BLUE
Special case: two correlated measurements

Consider two measurements y1, y2, with covariance matrix (ρ is correlation coefficient)

V =
(

σ21 ρσ1σ2
ρσ1σ2 σ22

)

Applying formulas from above:

V−1 = 1

1− ρ2

 1
σ2
1

−ρ
σ1σ2

−ρ
σ1σ2

1
σ2
2

 ; λ̂ = wy1 + (1− w)y2

w =
σ22 − ρσ1σ2

σ2
1

+ σ2
2

− 2ρσ1σ2
; V [λ̂] = σ2 =

(1− ρ2)σ21σ22
σ2
1

+ σ2
2

− 2ρσ1σ2
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Weighted average of correlated measurements:
interesting example

adapted from Cowan’s book and Scott Oser’s lecture:

Measure length of an object with two rulers. Both are calibrated to be accurate at temperature T = T0,

but otherwise have a temperature dependency: true length y is related to measured length L by

yi = Li + ci(T − T0)

Assume that we know ci and the (Gaussian) uncertainties. We measure L1, L2, and T , and want to

combine the measurements to get the best estimate of the true length.
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Weighted average of correlated measurements

Start by forming covariance matrix of the two measurements:

yi = Li + ci(T − T0); σ2i = σ2L + c2i σ2T

cov[y1, y2] = c1c2σ2T

Use the following parameter values, just for concreteness:

c1 = 0.1 L1 = 2.0± 0.1 y1 = 1.80± 0.22 T0 = 25

c2 = 0.2 L2 = 2.3± 0.1 y2 = 1.90± 0.41 T = 23± 2

With the formulas above, we obtain the following weighted average

y = 1.75± 0.19

Why doesn’t y lie between y1 and y2? Weird!
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Weighted average of correlated measurements

y1 and y2 were calculated assuming

T = 23

Fit adjusts temperature and finds best

agreement at T̂ = 22

Temperature is a nuisance parameter in

this case

Here, data themselves provide

information about nuisance parameter
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